Advertisement

Applied Physics A

, Volume 103, Issue 1, pp 135–137 | Cite as

Specific heat measurement of stable and metastable liquid Ti–Al alloys

  • K. Zhou
  • H. P. Wang
  • J. Chang
  • B. WeiEmail author
Article

Abstract

The specific heats of liquid Ti–20at.%Al and Ti–51at.%Al alloys are determined to be 33.01±2.75 and 31.27±2.91 J mol−1 K−1 in the stable superheated and metastable undercooled states by using an electromagnetic levitation drop calorimeter. The experimental temperature ranges are 1733–2133 K and 1511–1948 K, and maximum undercoolings of 230 (0.12 T L) and 242 K (0.14 T L) are achieved, respectively. On the basis of the experimental results, the specific heat dependence on the composition is obtained for binary Ti–Al alloys.

Keywords

Enthalpy Change Electromagnetic Levitation Metastable Liquid Experimental Temperature Range Maximum Undercoolings 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Maisuradze, M. Nicklas, R. Gumeniuk, C. Baines, W. Schnelle, H. Rosner, A. Leithe-Jasper, Y. Grin, R. Khasanov, Phys. Rev. Lett. 103, 14 (2009) CrossRefGoogle Scholar
  2. 2.
    R.K. Kummamuru, L. De La Rama, L. Hu, M.D. Vaudin, M.Y. Efremov, M.L. Green, D.A. LaVan, L.H. Allen, Appl. Phys. Lett. 95, 181911 (2009) CrossRefADSGoogle Scholar
  3. 3.
    K. Zhou, H.P. Wang, J. Chang, B. Wei, Philos. Mag. Lett. 90, 455 (2010) CrossRefADSGoogle Scholar
  4. 4.
    C.P. Opeil, B. Mihaila, R.K. Schulze, L. Manosa, A. Planes, W.L. Hults, R.A. Fisher, P.S. Riseborough, P.B. Littlewood, J.L. Smith, J.C. Lashley, Phys. Rev. Lett. 100, 165703 (2008) CrossRefADSGoogle Scholar
  5. 5.
    H.P. Wang, C.D. Cao, B. Wei, Appl. Phys. Lett. 84, 4062 (2004) CrossRefADSGoogle Scholar
  6. 6.
    L.E. Diaz-Sanchez, A.H. Romero, M. Cardona, R.K. Kremer, X. Gonze, Phys. Rev. Lett. 99, 16 (2007) CrossRefGoogle Scholar
  7. 7.
    P. Javorsky, L. Havela, F. Wastin, E. Colineau, D. Bouexiere, Phys. Rev. Lett. 96, 15 (2006) CrossRefGoogle Scholar
  8. 8.
    N. Wang, B. Wei, Appl. Phys. Lett. 80, 19 (2002) CrossRefADSGoogle Scholar
  9. 9.
    B. Wilthan, C. Cagran, G. Plttlacher, Int. J. Thermophys. 26, 1017 (2005) CrossRefADSGoogle Scholar
  10. 10.
    D. Basak, R.A. Overfelt, D. Wang, Int. J. Thermophys. 24, 1721 (2003) CrossRefADSGoogle Scholar
  11. 11.
    K. Boboridis, Int. J. Thermophys. 23, 277 (2002) CrossRefGoogle Scholar
  12. 12.
    E. Kaschnitz, P. Reiter, J. Therm. Anal. Calorim. 64, 351 (2001) CrossRefGoogle Scholar
  13. 13.
    H.P. Wang, B. Wei, Appl. Phys. Lett. 93, 171904 (2008) CrossRefADSGoogle Scholar
  14. 14.
    B. Li, X. Liang, J.C. Earthman, E.J. Lavernia, Acta Mater. 44, 2409 (1996) CrossRefGoogle Scholar
  15. 15.
    T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon, Oxford, 1993) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations