Skip to main content
Log in

Irradiation of amorphous Ta42Si13N45 film with a femtosecond laser pulse

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Films of 260 nm thickness, with atomic composition Ta42Si13N45, on 4″ silicon wafers, have been irradiated in air with single laser pulses of 200 femtoseconds duration and 800 nm wave length. As sputter-deposited, the films are structurally amorphous. A laterally truncated Gaussian beam with a near-uniform fluence of ∼0.6 J/cm2 incident normally on such a film ablates 23 nm of the film. Cross-sectional transmission electron micrographs show that the surface of the remaining film is smooth and flat on a long-range scale, but contains densely distributed sharp nanoprotrusions that sometimes surpass the height of the original surface. Dark field micrographs of the remaining material show no nanograins. Neither does glancing angle X-ray diffraction with a beam illuminating many diffraction spots. By all evidence, the remaining film remains amorphous after the pulsed femtosecond irradiation.

The same single pulse, but with an enhanced and slightly peaked fluence profile, creates a spot with flat peripheral terraces whose lateral extents shrink with depth, as scanning electron and atomic force micrographs revealed. Comparison of the various figures suggests that the sharp nanoprotrusions result from an ejection of material by brittle fraction and spallation, not from ablation by direct beam–solid interaction. Conditions under which spallation should dominate over ablation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. von Allmen, Laser-Beam Interactions with Materials, Springer Series in Materials Science, vol. 2 (Springer, Berlin, 1987)

    Book  Google Scholar 

  2. D. Bauerle, Laser Processing and Chemistry, 3rd. edn. (Springer, Berlin, 2000)

    Google Scholar 

  3. M.-A. Nicolet, P.H. Giauque, Microelectron. Eng. 55, 357 (2001)

    Article  Google Scholar 

  4. E. Kolawa, P.J. Pokela, J.S. Reid, J.S. Chen, R.P. Ruiz, M.-A. Nicolet, IEEE Electron Device Lett. 12(6), 321 (1991)

    Article  ADS  Google Scholar 

  5. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, U. Glatzel, Appl. Phys. A 76, 309 (2003)

    Article  ADS  Google Scholar 

  6. T. Höche, D. Ruthe, T. Petsch, Appl. Phys. A 79, 961 (2004)

    Article  ADS  Google Scholar 

  7. E. Coyne, J.P. Magee, P. Mannion, G.M. O’Conner, T.J. Glynn, Appl. Phys. A 81, 371 (2005)

    Article  ADS  Google Scholar 

  8. J. Jia, M. Li, C.V. Thompson, Appl. Phys. Lett. 84, 3205 (2004)

    Article  ADS  Google Scholar 

  9. A. Borowiec, M. Couillard, G.A. Botton, H.K. Haugen, Appl. Phys. A 79, 1887 (2004)

    ADS  Google Scholar 

  10. Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, M. Yoshida, Appl. Phys. Lett. 90, 044107 (2007)

    Article  ADS  Google Scholar 

  11. T.H.R. Crawford, J. Yamanaka, G.A. Botton, H.K. Haugen, J. Appl. Phys. 103, 053104 (2008)

    Article  ADS  Google Scholar 

  12. T.H.R. Crawford, J. Yamanaka, E.M. Hsu, G.A. Botton, H.K. Haugen, Appl. Phys. A 91, 473 (2008)

    Article  ADS  Google Scholar 

  13. T. Okada, H. Kawahara, Y. Ishida, R. Kumai, T. Tomita, S. Matsuo, S. Hashimoto, M. Kawamoto, Y. Makita, M. Yamaguchi, Appl. Phys. A 92, 665 (2008)

    Article  ADS  Google Scholar 

  14. E.M. Hsu, T.H.R. Crawford, C. Maunders, G.A. Botton, H.K. Haugen, Appl. Phys. Lett. 92, 221112 (2008)

    Article  ADS  Google Scholar 

  15. M.S. Rogers, C.P. Grigorepoulos, A.M. Minor, S.S. Mao, Appl. Phys. Lett. 94, 701111 (2009)

    Article  ADS  Google Scholar 

  16. T.V. Kononenko, S.M. Pimenov, V.V. Kononeko, E.V. Zavedeev, V.I. Konov, G. Dumitru, V. Romano, Appl. Phys. A 79, 534 (2004)

    Article  ADS  Google Scholar 

  17. F. Cottet, M. Boustie, J. Appl. Phys. 66(9), 4067 (1989)

    Article  ADS  Google Scholar 

  18. S. Eliezer, I. Gilath, T. Bar-Noy, J. Appl. Phys. 87(2), 715 (1990)

    Article  ADS  Google Scholar 

  19. S. Eliezer, Y. Gazit, I. Gilath, J. Appl. Phys. 68(1), 356 (1990)

    Article  ADS  Google Scholar 

  20. V.E. Fortov, V.V. Kostin, S. Eliezer, J. Appl. Phys. 70(8), 4524 (1991)

    Article  ADS  Google Scholar 

  21. S. Courtier, T. de Rességuier, M. Hallouin, J.P. Romain, F. Bauer, J. Appl. Phys. 79(12), 9338 (1996)

    Article  ADS  Google Scholar 

  22. L. Tollier, R. Fabbro, E. Bartnicki, J. Appl. Phys. 83, 1224 (1998)

    Article  ADS  Google Scholar 

  23. L. Tollier, R. Fabbro, J. Appl. Phys. 83, 1231 (1998)

    Article  ADS  Google Scholar 

  24. W.H. Zhu, M. Yoshida, H. Tamura, K. Kondo, S. Tanimura, J. Mater. Sci. Lett. 20, 961 (2001)

    Article  Google Scholar 

  25. H. Tamura, T. Kohama, K. Kondo, M. Yoshida, J. Appl. Phys. 89(6), 3520 (2001)

    Article  ADS  Google Scholar 

  26. G. Dumitru, V. Romano, H. Weber, S. Pimenov, T. Kononenko, M. Sentis, J. Hermann, S. Bruneau, Appl. Surf. Sci. 222, 226 (2005)

    Article  ADS  Google Scholar 

  27. W.L. Johnson, Y.T. Cheng, M. van Rossum, M.-A. Nicolet, Nucl. Instrum. Methods B 7–8, 657 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Romano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, V., Meier, M., Theodore, N.D. et al. Irradiation of amorphous Ta42Si13N45 film with a femtosecond laser pulse. Appl. Phys. A 104, 357–364 (2011). https://doi.org/10.1007/s00339-010-6149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6149-3

Keywords

Navigation