Applied Physics A

, Volume 104, Issue 1, pp 219–228 | Cite as

(Chicken feathers keratin)/polyurethane membranes

  • V. Saucedo-Rivalcoba
  • A. L. Martínez-Hernández
  • G. Martínez-Barrera
  • C. Velasco-Santos
  • V. M. Castaño


Actually, chicken feathers are considered as waste from the poultry industry; however, 90% of feather structure is constituted by a protein called keratin. In this research, the properties of feather keratin and polyurethane are combined in order to synthesize hybrid synthetic–natural membranes. Both polymers are linked by urethane bonds which are similar to peptide bonds found in proteins. Keratin is incorporated onto the polyurethane matrix by dissolving protein in a salt solution (urea and 2-mercaptoethanol) at different concentrations: 11, 13, 15, 17, 19, and 21% (w/w). In order to know the effect of urea on membranes, keratin is incorporated to polyurethane in two ways; as keratin salt solution and after dialyzing. Both membrane types were characterized by Scanning Electron Microscopy (SEM) to observe their morphologic changes. Fourier Transformed Infrared Spectroscopy (FT-IR), Termogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC) were used to study membrane structures. Results show that keratin is grafted in polyurethane and, therefore, there is an influence of amino acids through the amino and carboxylic groups (NH and COOH) into the synthetic polymer structure. According with characterization results, the obtained membranes are functional materials that can be useful in diverse applications, among them the separation process can be emphasized.


Polyurethane Hard Segment Soft Segment Chicken Feather Toluene Diisocyanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of abbreviation and symbols



% (w/w)

percent (weight/weight)


Fourier transform infrared


thermogravimetric analysis


differential scanning calorimetry




Toluene diisocyanate








degrees Celsius








degrees Celsius per minute




attenued total reflectance


polyurethane keratin salt


polyurethane dialyzed keratin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.L. Martínez-Hernández, C. Velasco Santos, M. de Icaza, V.M. Castaño, Compos. Part B Eng. 38, 405 (2007) CrossRefGoogle Scholar
  2. 2.
    M. Feughelman, Keratin, in Encyclopedia of Polymer Science and Engineering, vol. 8, ed. by H. Mark, N. Bikales, C. Overberger, C. Menges, J.I. Kroschwitz (Wiley, New York, 1987) Google Scholar
  3. 3.
    E.H. Mercer, Keratin and Keratinization, an Essay in Molecular Biology (Pergamon, Oxford, 1961) Google Scholar
  4. 4.
    A.L. Martínez-Hernández, A.L. Santiago-Valtierra, M.J. Alvarez-Ponce, Mater. Res. Innov. 12, 184 (2008) CrossRefGoogle Scholar
  5. 5.
    S.A. Sayed, S.S. Saleh, E.E. Hasan, Desalinaton 181, 243 (2005) CrossRefGoogle Scholar
  6. 6.
    F.A. Banat, S. Al-Asheh, Environ. Eng. Policy 2, 85 (2000) CrossRefGoogle Scholar
  7. 7.
    M. Tsukada, H. Shiozaki, G. Freddi, J.S. Crighton, J. Appl. Polym. Sci. 64, 343 (1997) CrossRefGoogle Scholar
  8. 8.
    G. Freddi, M. Tsukada, H. Shiosaki, J. Appl. Polym. Sci. 71, 1563 (1999) CrossRefGoogle Scholar
  9. 9.
    M. Kruppa, D. Frank, H. Leffler-Schuster, B. König, Inorg. Chim. Acta 359, 1159 (2006) CrossRefGoogle Scholar
  10. 10.
    E. Farkas, I. Sóvágó, Metal complexes of amino acids and peptides, in Amino Acids, Peptides and Proteins, vol. 33, ed. by G.C. Barrett, J.S. Davies (Royal Society of Chemistry Publishing, Cambridge, 2002) Google Scholar
  11. 11.
    S. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, Water Res. 33, 2469 (1999) CrossRefGoogle Scholar
  12. 12.
    S.M.C. Ritchie, L.G. Bachas, T. Olin, S.K. Sikdar, D. Bhattacharyya, Lagmuir 15, 6346 (1999) CrossRefGoogle Scholar
  13. 13.
    K.M. Zia, M. Barikani, I.A. Bhatti, M. Zuber, H.N. Bhatti, J. Appl. Polym. Sci. 110, 769 (2008) CrossRefGoogle Scholar
  14. 14.
    C. Ciobanu, M. Ungureanu, L. Ignat, D.D. Ungureanu, V.I. Popa, Ind. Crops Prod. 20, 231 (2004) CrossRefGoogle Scholar
  15. 15.
    H. Tian, Y. Wang, L. Zhang, C. Quan, X. Zhang, Ind. Crops Prod. 32, 13 (2010) CrossRefGoogle Scholar
  16. 16.
    W. Wang, Y. Guo, J.U. Otaigbe, Polymer 51, 5448 (2010) Google Scholar
  17. 17.
    J. Liu, D. Ma, Z. Li, Eur. Polym. J. 38, 661 (2002) CrossRefGoogle Scholar
  18. 18.
    A.K. Mishra, D.K. Chattopadhyay, B. Sreedhar, K.V.S.N. Raju, J. Appl. Polym. Sci. 102, 3158 (2006) CrossRefGoogle Scholar
  19. 19.
    S. Zhang, Z. Ren, S. He, Y. Zhu, C. Zhu, Spectrochim. Acta A 66, 188 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    T.L. Wang, T.H. Hsieh, Polym. Degrad. Stab. 55, 95 (1997) CrossRefGoogle Scholar
  21. 21.
    G. Ciobanu, G. Carja, O. Ciobanu, Desalination 222, 197 (2008) CrossRefGoogle Scholar
  22. 22.
    K. Rzeszutek, A. Chow, J. Membr. Sci. 181, 265 (2001) CrossRefGoogle Scholar
  23. 23.
    S. Das, A.K. Banthia, B. Adhikari, Chem. Eng. J. 138, 215 (2008) CrossRefGoogle Scholar
  24. 24.
    A.L. Santiago-Valtierra, Utilización de un residuo avícola para generar materiales de queratina aplicados a la eliminación de cromo VI como contaminante en el agua. Master Degree Thesis, Instituto Tecnológico de Aguascalientes, México, Junio 2005 (in Spanish) Google Scholar
  25. 25.
    W.F. Schmidt, Innovative feather utilization strategies, in Proceedings of the 1998 National Poultry Waste Management Symposium, Springdale, USA (1998) Google Scholar
  26. 26.
    P.M.M. Schrooyen, P.J. Dijkstra, R.C. Oberthür, A. Bantajes, J. Feijen, J. Agric. Food Chem. 48, 4326 (2000) CrossRefGoogle Scholar
  27. 27.
    P.M.M. Schrooyen, P.J. Dijkstra, R.C. Oberthür, A. Bantajes, J. Feijen, J. Agric. Food Chem. 49, 221 (2001) CrossRefGoogle Scholar
  28. 28.
    A. Aneja, Structure-property relationships of flexible polyurethane foams. PhD Thesis, Department of Chemical Engineering, Virginia Polytechnic Institute and State University, USA (2005) Google Scholar
  29. 29.
    F.M.B. Coutinho, M.C. Delpech, Polym. Degrad. Stab. 70, 49 (2000) CrossRefGoogle Scholar
  30. 30.
    P.S. Wang, W.Y. Chiu, L.W. Chen, B.L. Denq, T.M. Don, Y.S. Chiu, Polym. Degrad. Stab. 66, 307 (1999) CrossRefGoogle Scholar
  31. 31.
    B. Ravat, R. Gschwind, M. Grivet, E. Duverger, A. Chambaudet, L. Makovicka, Nucl. Instrum. Methods B 160, 499 (2000) ADSCrossRefGoogle Scholar
  32. 32.
    A.L. Martínez-Hernández, C. Velasco-Santos, M. de Icaza, V.M. Castaño, e-Polymers, No. 016 (2003) Google Scholar
  33. 33.
    A.M. Issam, Eur. Polym. J. 43, 214 (2007) CrossRefGoogle Scholar
  34. 34.
    B.F. d’Arlas, L. Rueda, P.M. Stefani, K. de la Caba, I. Mondragón, A. Eceiza, Thermochim. Acta 459, 94 (2007) CrossRefGoogle Scholar
  35. 35.
    E.A. Moawed, Anal. Chim. Acta 580, 263 (2006) CrossRefGoogle Scholar
  36. 36.
    M. Jackson, H.H. Mantsch, Crit. Rev. Biochem. Mol. 30, 95 (1995) CrossRefGoogle Scholar
  37. 37.
    A.L. Martínez-Hernández, C. Velasco Santos, M. de Icaza, V.M. Castaño, Int. J. Environ. Pollut. 23, 162 (2005) Google Scholar
  38. 38.
    C.R. Jacob, S. Luber, M. Reiher, J. Phys. Chem. B 113, 6558 (2009) CrossRefGoogle Scholar
  39. 39.
    H.G.M. Edwards, D.E. Hunt, M.G. Sibley, Spectrochim. Acta A 54, 745 (1998) ADSCrossRefGoogle Scholar
  40. 40.
    M. Herrera, G. Matuschek, A. Kettrup, Polym. Degrad. Stab. 78, 323 (2002) CrossRefGoogle Scholar
  41. 41.
    D. Sarkar, J.-C. Yang, A.S. Gupta, S.T. Lopina, J. Biomed. Mater. Res. A 90, 263 (2009) CrossRefGoogle Scholar
  42. 42.
    A. Lundström, B. Andersson, L. Olsson, Chem. Eng. J. 150, 544 (2009) CrossRefGoogle Scholar
  43. 43.
    N. Yoshitake, M. Furukawa, J. Anal. Appl. Pyrolysis 33, 269 (1995) CrossRefGoogle Scholar
  44. 44.
    N. Grassie, M. Zulfiqar, J. Polym. Sci. Polym. Chem. 16, 1563 (1978) CrossRefGoogle Scholar
  45. 45.
    G. de la Rosa, H.E. Reynel-Avila, A. Bonilla-Petriciolet, I. Cano-Rodríguez, C. Velasco-Santos, A.L. Martínez-Hernández, Int. J. Chem. Biol. Eng. 1, 185 (2008) Google Scholar
  46. 46.
    V. Saucedo-Rivalcoba, A.L. Martínez-Hernández, G. Martínez-Barrera, C. Velasco-Santos, J.L. Rivera-Armenta, V.M. Castaño, Water Air Soil Pollut. (2010). doi: 10.1007/s11270-010-0668-6 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • V. Saucedo-Rivalcoba
    • 1
    • 3
  • A. L. Martínez-Hernández
    • 2
  • G. Martínez-Barrera
    • 1
  • C. Velasco-Santos
    • 2
  • V. M. Castaño
    • 3
  1. 1.Laboratorio de Investigación y Desarrollo de Materiales Avanzados (LIDMA), Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMéxico
  2. 2.Ingeniería en Materiales, Departamento de Metal-MecánicaInstituto Tecnológico de QuerétaroQuerétaroMéxico
  3. 3.Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoQuerétaroMéxico

Personalised recommendations