Skip to main content
Log in

Preparation of few-layer nitrogen-doped graphene nanosheets by DC arc discharge under nitrogen atmosphere of high temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Few-layer N-doped graphene nanosheets (GNSs) were prepared by a DC arc discharge under a nitrogen atmosphere of high temperature. HRTEM characterization shows the typical morphology of the several layer GNSs and some GNSs stacking together in the form of terrace. The typically rotational stacking faults can be observed in the GNSs. The Raman spectrum shows the characteristic peak of the graphene. It is confirmed by XRD, EELS, and EDX characterizations that the GNSs are doped with nitrogen. The content of few-layer N-doped GNSs in the column-shaped deposits formed on the top of the cathode is larger than 50 weight %. The formation mechanism of N-doped GNSs is discussed on the foundation of our results and other related published work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim, Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  2. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008)

    Article  ADS  Google Scholar 

  3. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  4. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  5. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008)

    Article  ADS  Google Scholar 

  6. J.A. Rogers, Nat. Nanotechnol. 3, 254 (2008)

    Article  ADS  Google Scholar 

  7. A. Malesevic, R. Kemps, A. Vanhulsel, M.P. Chowdhury, A. Volodin, C.V. Haesendonck, J. Appl. Phys. 104, 084301 (2008)

    Article  ADS  Google Scholar 

  8. G.D. Yuan, W.J. Zhang, Y. Yang, Y.B. Tang, Y.Q. Li, J.X. Wang, X.M. Meng, Z.B. He, C.M.L. Wu, I. Bello, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 467, 361 (2009)

    Article  ADS  Google Scholar 

  9. M. Choucair, P. Thordarson, J.A. Stride, Nat. Nanotechnol. 4, 30 (2009)

    Article  ADS  Google Scholar 

  10. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z.Y. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3, 563 (2008)

    Article  Google Scholar 

  11. K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, J. Phys. Chem. C 113, 4257 (2009)

    Article  Google Scholar 

  12. Z.S. Wu, W.C. Ren, L.B. Gao, J.P. Zhao, Z.P. Chen, B.L. Liu, D.M. Tang, B. Yu, C.B. Jiang, H.M. Cheng, ACS Nano 3, 411 (2009)

    Article  Google Scholar 

  13. D.M. Gattia, M.V. Antisari, R. Marazzi, Nanotechnology 18, 255604 (2007)

    Article  ADS  Google Scholar 

  14. S. Karmakar, N.V. Kulkarni, A.B. Nawale, N.P. Lalla, R. Mishra, V.G. Sathe, S.V. Bhoraskar, A.K. Das, J. Phys., D. Appl. Phys. 42, 115201 (2009)

    Article  ADS  Google Scholar 

  15. S. Cui, P. Scharff, C. Siegmund, D. Schneider, K. Risch, S. Klötzer, L. Spiess, H. Romanus, J. Schawohl, Carbon 42, 931 (2004)

    Article  Google Scholar 

  16. N. Li, Z.Y. Wang, K. K Zhao, Z.J. Shi, Z.N. Gu, S.K. Xu, Carbon 48, 255 (2010)

    Article  Google Scholar 

  17. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009)

    Article  ADS  Google Scholar 

  18. Y.C. Si, E.T. Samulski, Chem. Mater. 20, 6792 (2008)

    Article  Google Scholar 

  19. J.H. Warner, M.H. Rümmeli, T. Gemming, B. Büchner, G.A.D. Briggs, Nano Lett. 9, 102 (2009)

    Article  ADS  Google Scholar 

  20. J. Hass, F. Varchon, J.E. Millán-Otoya, M. Sprinkle, N. Sharma, W.A. de Heer, C. Berger, P.N. First, L. Magaud, E.H. Conrad, Phys. Rev. Lett. 100, 125504 (2008)

    Article  ADS  Google Scholar 

  21. W.T. Gu, W. Zhang, X.M. Li, H.W. Zhu, J.Q. Wei, Z. Li, Q.K. Shu, C. Wang, K.L. Wang, W.C. Shen, F.Y. Kang, D.H. Wu, J. Mater. Chem. 19, 3367 (2009)

    Article  Google Scholar 

  22. I.O. Maciel, N. Anderson, M.A. Pimenta, A. Hartschuh, H.Q.M. Terrones, H. Terrones, J. Campos-Delgado, A.M. Rao, L. Novotny, A. Jorio, Nat. Mater. 7, 878 (2008)

    Article  ADS  Google Scholar 

  23. A. Dato, V. Radmilovic, Z.H. Lee, J. Phillips, M. Frenklach, Nano Lett. 8, 2012 (2008)

    Article  ADS  Google Scholar 

  24. K. McGuire, N. Gothard, P.L. Gai, M.S. Dresselhaus, G. Sumanasekera, A.M. Rao, Carbon 43, 219 (2005)

    Article  Google Scholar 

  25. M. Glerup, J. Steinmetz, D. Samaille, O. Stéphan, S. Enouz, A. Loiseau, S. Roth, P. Bernier, Chem. Phys. Lett. 387, 193 (2004)

    Article  ADS  Google Scholar 

  26. H. Lin, R. Arenal, S. Enouz-Vedrenne, O. Stephan, A. Loiseau, J. Phys. Chem. C 113, 9509 (2009)

    Article  Google Scholar 

  27. P. Ayala, R. Arenal, M. Rümmeli, A. Rubio, T. Pichler, Carbon 48, 575 (2010)

    Article  Google Scholar 

  28. J. Casanovas, J.M. Ricart, J. Rubio, F. Illas, J.M. Jiménez-Mateos, J. Am. Chem. Soc. 188, 8071 (1996)

    Article  Google Scholar 

  29. I. Shimoyama, G.H. Wu, T. Sekiguchi, Y. Baba, Phys. Rev. B 62, R6053 (2000)

    Article  ADS  Google Scholar 

  30. P. Ayala, A. Grüneis, T. Gemming, D. Grimm, C. Kramberger, M.H. Rümmeli, F.L. Freire Jr., H. Kuzmany, R. Pfeiffer, A. Barreiro, B. Büchner, T. Pichler, J. Phys. Chem. C 111, 2879 (2007)

    Article  Google Scholar 

  31. C.P. Ewels, M. Glerup, J. Nanosci. Nanotechnol. 5, 1 (2005)

    Article  Google Scholar 

  32. F. Villalpando-Paze, A. Zamudio, A.L. Elias, H. Son, E.B. Barros, S.G. Chou, Y.A. Kim, H. Muramatsu, T. Hayashi, J. Kong, H. Terrones, G. Dresselhaus, M. Endo, M. Terrones, M.S. Dresselhaus, Chem. Phys. Lett. 424, 345 (2006)

    Article  ADS  Google Scholar 

  33. C.P. Ewels, M. Glerup, J. Nanosci. Nanotechnol. 5, 1345 (2005)

    Article  Google Scholar 

  34. L. Qiao, W.T. Zheng, H. Xu, L. Zhang, Q. Jiang, J. Chem. Phys. 126, 164702 (2007)

    Article  ADS  Google Scholar 

  35. S. Cui, P. Scharff, C. Siegmund, L. Spiess, H. Romanus, J. Schawohl, K. Risch, D. Schneider, S. Klötzer, Carbon 41, 1648 (2003)

    Article  Google Scholar 

  36. Y.Y. Wang, M.Sc. Thesis. Tianjin University, Tianjin, China, 2007

  37. E.G. Gamaly, T.W. Ebbesen, Phys. Rev. B 52, 2083 (1995)

    Article  ADS  Google Scholar 

  38. Y.Y. Wang, S. Cui, L. Cui, Y.X. Zhang, F. He, X.P. Chen, T. Lin, H.J. Kang, X.L. Yin, J. Mater. Sci. Eng. 26, 86 (2008) (in Chinese)

    Google Scholar 

  39. M. Keidar, J. Phys., D. Appl. Phys. 40, 2388 (2007)

    Article  ADS  Google Scholar 

  40. I. Alexandrou, C.J. Kiely, A.J. Papworth, G.A.J. Amaratunga, Carbon 42, 1651 (2004)

    Article  Google Scholar 

  41. M. Keidar, A.M. Waas, Nanotechnology 15, 1571 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, L., Cui, L., Lin, K. et al. Preparation of few-layer nitrogen-doped graphene nanosheets by DC arc discharge under nitrogen atmosphere of high temperature. Appl. Phys. A 102, 289–294 (2011). https://doi.org/10.1007/s00339-010-6110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6110-5

Keywords

Navigation