Skip to main content
Log in

Characterization and photoluminescence studies of Eu2+-doped BaSO4 phosphor prepared by the recrystallization method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Eu doped BaSO4 was prepared by the recrystallization method and characterization of the material was done by using X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. From the XRD pattern of Eu doped BaSO4 compound, it was found that the prominent phase formed was BaSO4 and traces of other phases were very weak and the result of FTIR spectrum of BaSO4:Eu shows that the sulfur-oxygen stretch was found at around 1100 cm−1. The room-temperature PL spectra of the Eu doped BaSO4 sample showed one peak centered at 374 nm, which is the characteristic emission of Eu2+ ion. This emission band at 374 nm corresponds to the 4f6 5d→4f7 (8S7/2) transitions of Eu2+ ions. The excitation spectrum taken at the wavelength 374 nm extends over a wide range of wavelengths from 220–350 nm with a strong peak at around 260 nm. Furthermore, the present sample shows good crystal quality and high photoluminescence sensitivity. Hence our results suggest possible potential applications of Eu doped BaSO4 phosphor in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Azorin, C. Furetta, A. Scacco, Preparation and properties of thermoluminescent materials. Phys. Status Solidi A 138, 9 (1993)

    Article  ADS  Google Scholar 

  2. J. Manam, S. Das, J. Alloys Compd. 489(1), 84–90 (2010)

    Article  Google Scholar 

  3. U. Madhusoodanan, M.T. Jose, A.R. Lakshmanan, Radiat. Meas. 30, 65–72 (1999)

    Article  Google Scholar 

  4. R.P. Yavetski, E.F. Dolzhenkova, A.V. Tolmachev, S.V. Parkhomenko, V.N. Baumer, A.L. Prosvirnin, J. Alloys Compd. 441, 202–205 (2007)

    Article  Google Scholar 

  5. D.S. Thakare, S.K. Omanwar, P.L. Muthal et al., Phys. Status Solidi A 201, 574–581 (2004)

    Article  ADS  Google Scholar 

  6. N. Yamashita, I. Yamamoto, K. Ninagawa, T. Wada, Y. Yamashita, Y. Nakao, Jpn. J. Appl. Phys. 24, 1174 (1985)

    Article  ADS  Google Scholar 

  7. F.M. Ryan, W. Lehmann, D.W. Feldman, J. Murphy, J. Electrochem. Soc. 121, 1475 (1974)

    Article  Google Scholar 

  8. J.M. Luthra, N.M. Gupta, J. Lumin. 9, 94 (1974)

    Article  Google Scholar 

  9. Hanawalt et al., Anal. Chem. 10, 475 (1938)

    Google Scholar 

  10. H. Sawada, Y. Takecuhi, Z. Kristallogr. 191, 161 (1990)

    Article  Google Scholar 

  11. X. Gong, P. Wu, W.K. Chan, W. Chen, J. Phys. Chem. Solids 61, 115–121 (2000)

    Article  ADS  Google Scholar 

  12. N. Salah, P.D. Sahare, S.P. Lochab, P. Kumar, Radiat. Meas. 41(1), 40–47 (2000)

    Article  Google Scholar 

  13. B. Smith, Infrared Spectral Interpretation; A Systematic Approach (CRC Press, New York, 1999)

    Google Scholar 

  14. K. Nagamoto, Infrared Spectra of Inorganic and Coordination Compounds (Wiley Interscience, New York, 1970)

    Google Scholar 

  15. Z. Pei, Q. Zeng, Q. Su, J. Phys. Chem. Solids 61, 9–12 (2000)

    Article  ADS  Google Scholar 

  16. Q. Su, H. Liang, T. Hu et al., J. Alloys Compd. 344, 132–136 (2002)

    Article  Google Scholar 

  17. K. Machida, G. Adachi, J. Shiokawa, J. Lumin. 21, 101–110 (1979)

    Article  Google Scholar 

  18. R.P. Yavetskiy, E.F. Dolzhenkova, A.V. Tolmachev, S.V. Parkhomenkoa, V.N. Baumer, A.L. Prosvirnin, J. Alloys Compd. 441, 202–205 (2007)

    Article  Google Scholar 

  19. L. Eichenauer, B. Jarofke, H.C. Mertins, J. Dreyhsing, W. Busse, H.E. Gumlich, P. Benalloul, C. Barthou, J. Benoit, C. Fouassier, A. Garcia, Phys. Status Solidi A 153, 515 (1996)

    Article  ADS  Google Scholar 

  20. J. Tauc, in Optical Properties of Solids, ed. by F. Abeles (ed.) (North-Holland, Amsterdam, 1970)

    Google Scholar 

  21. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 2004), p. 39

    Google Scholar 

  22. P. Patnaik, Handbook of Inorganic Chemicals (McGraw-Hill, New York, 2002)

    Google Scholar 

  23. T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, J. Electrochem. Soc. 143, 2670 (1996)

    Article  Google Scholar 

  24. C. Chartier, C. Barthou, P. Benalloul, J.M. Frigerio, J. Lumin. 111, 147–158 (2005)

    Article  Google Scholar 

  25. M.K. Chong, K. Pita, C.H. Kam, J. Phys. Chem. Solids 66, 213 (2005)

    Article  ADS  Google Scholar 

  26. E.J. Kim, Y.C. Kang, H.D. Park, S.K. Ryu, Mater. Res. Bull. 38, 515 (2003)

    Article  Google Scholar 

  27. C.S. Park, M.G. Kwak, S.S. Choi, Y.S. Song, S.J. Hong, J.I. Han, D.Y. Lee, J. Lumin. 118, 199 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manam, J., Kumari, P. & Das, S. Characterization and photoluminescence studies of Eu2+-doped BaSO4 phosphor prepared by the recrystallization method. Appl. Phys. A 104, 197–203 (2011). https://doi.org/10.1007/s00339-010-6101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6101-6

Keywords

Navigation