Skip to main content
Log in

Monodisperse rutile TiO2 nanorod-based microspheres with various diameters: hydrothermal synthesis, formation mechanism and diameter- and crystallinity-dependent photocatalytic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Monodisperse microspheres constructed with rutile TiO2 nanorods were synthesized by a hydrothermal reaction of TiCl3 with Na2C2O4, ethylene glycol (EG) and H2O at 140–220°C for 4–12 h. The diameter of the microspheres can be changed in the range of 190–1200 nm by tuning the reaction temperature and time. The constituent nanorods grow along the c-axis of rutile, the side facets of which are (110), (\(\overline{1}10),(1\overline{1}0)\), and (\(\overline{1}\overline{1}0)\). The formation of the rod-like structure results from the selective adsorption of \(\mathrm{C}_{2}\mathrm{O}_{4}^{2-}\) ions on {110} prismatic faces of rutile TiO2 nanorods. The hydrogen bonding formed between rutile TiO2 nanorods adsorbing EG drives the formation of the nanorod-based spherical nanoarchitectures. The photocatalytic ability of the as-prapared the anatase-rutile composite TiO2 nanorod-based nanospheres with a diameter of about 190 nm is stronger than that of rutile TiO2 nanorod-based nanospheres with diameters of 500 and 1000 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, C.S. Sean, J. Zou, H.M. Cheng, G.Q. Lu, J. Am. Chem. Soc. 131, 4078 (2009)

    Article  Google Scholar 

  2. H. Li, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, J. Am. Chem. Soc. 129, 8406 (2007)

    Article  Google Scholar 

  3. X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng, J. Am. Chem. Soc. 131, 3152 (2009)

    Article  Google Scholar 

  4. X.X. Li, Y.J. Xiong, Z.Q. Li, Y. Xie, Inorg. Chem. 45, 3493 (2006)

    Article  Google Scholar 

  5. Y.Y. Li, J.P. Liu, Z.J. Jia, Mater. Lett. 60, 1753 (2006)

    Article  Google Scholar 

  6. Y. Jin, T. Akiyoshi, S. Ryuichi, H. Shuzi, R. Krishnan, Adv. Mater. 15, 21 (2003)

    Google Scholar 

  7. S.C. Yang, D.J. Yang, J. Kim, J.M. Hong, H.G. Kim, H. Lee, Adv. Mater. 20, 1059 (2008)

    Article  Google Scholar 

  8. B. Liu, S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  Google Scholar 

  9. Z.B. Xie, S. Adams, D.J. Blachwood, J. Wang, Nanotechnology 19, 405701 (2008)

    Article  Google Scholar 

  10. Y.F. Zhu, J.J. Shi, Z.Y. Zhang, C. Zhang, X.R. Zhang, Anal. Chem. 74, 120 (2002)

    Article  Google Scholar 

  11. Y.M. Wang, G.J. Du, H. Liu, S.B. Qin, N. Wang, C.G. Hu, X.T. Tao, J. Jiao, J.Y. Wang, Z.L. Wang, Adv. Funct. Mater. 18, 1131 (2008)

    Article  Google Scholar 

  12. L. Kavan, M. Graltzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, J. Am. Chem. Soc. 118, 6717 (1996)

    Article  Google Scholar 

  13. J.E. Wijnhoven, L.V. Willem, Science 281, 802 (1998)

    Article  ADS  Google Scholar 

  14. H.W. Kim, H. Kim, V. Salih, C. Knowles, J. Biomed. Mater. Res. 72, 1 (2005)

    Article  MATH  Google Scholar 

  15. K.J. Kim, K.D. Benkstein, J. Lagemaat, A. Frank, J. Chem. Mater. 14, 1042 (2002)

    Article  Google Scholar 

  16. N.G. Park, J. Lagemaat, A.J. Frank, J. Phys. Chem. B 104, 8989 (2000)

    Article  Google Scholar 

  17. T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Appl. Catal. A 244, 383 (2003)

    Article  Google Scholar 

  18. S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisano, J. Am. Chem. Soc. 130, 1568 (2008)

    Article  Google Scholar 

  19. P.S. Liu, W.P. Cai, M. Fang, Z.G. Li, H.B. Zeng, J.L. Hu, X.D. Luo, W.P. Jing, Nanotechnology 20, 285707 (2009)

    Article  Google Scholar 

  20. Q. Huang, L. Gao, Chem. Lett. 32, 7 (2003)

    Article  Google Scholar 

  21. M.N. Tahir, P. Theato, P. Oberle, G. Melnyk, S. Faiss, U. Faiss, A. Janshoff, M. Stepputat, W. Tremel, Langmuir 22, 5209 (2006)

    Article  Google Scholar 

  22. J.M. Wu, W.T. Wu, Nanotechnology 17, 105 (2006)

    Article  ADS  Google Scholar 

  23. M. Kobayashi, V. Petrykin, M. Kakihana, J. Am. Ceram. Soc. 92, S21 (2009)

    Article  Google Scholar 

  24. E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, J. Am. Chem. Soc. 126, 7790 (2004)

    Article  Google Scholar 

  25. X.J. Feng, J. Zhai, L. Jiang, Angew. Chem. Int. Ed. 44, 5115 (2005)

    Article  Google Scholar 

  26. Y.W. Wang, L.Z. Zhang, K.J. Deng, X.Y. Chen, J. Phys. Chem. C 111, 6 (2007)

    Article  Google Scholar 

  27. Y.F. Zhang, X.H. Feng, J.Z. Liu, Y. Wei, Chem. Lett. 37, 12 (2008)

    Article  Google Scholar 

  28. L. Liu, Y.P. Zhao, H.J. Liu, Y.Q. Wang, Nanotechnology 17, 5046 (2006)

    Article  ADS  Google Scholar 

  29. L. Li, H.Q. Yang, J. Yu, Y. Chen, J.H. Ma, J.Y. Zhang, Y.Z. Song, F. Gao, J. Cryst. Growth 311, 4199 (2009)

    Article  ADS  Google Scholar 

  30. L.H. Zhang, H.Q. Yang, L. Li, R.G. Zhang, J.H. Ma, X.L. Xie, F. Gao, Inorg. Chem. 47, 11950 (2008)

    Article  Google Scholar 

  31. C.C. Wang, J.Y. Ying, Chem. Mater. 11, 11 (1999)

    ADS  MATH  Google Scholar 

  32. P.M. Oliver, G.W. Watson, E.T. Kelsey, S.C. Parker, J. Mater. Chem. 7, 563 (1997)

    Article  Google Scholar 

  33. M.F. Casula, D.J. Zaziski, E.M. Chan, A. Corrias, A.P. Alivisatos, J. Am. Chem. Soc. 128, 1675 (2006)

    Article  Google Scholar 

  34. T. Ozawa, M. Iwasaki, H. Tada, T. Akita, K. Tanaka, S. Ito, J. Colloid Interface Sci. 281, 510 (2005)

    Article  Google Scholar 

  35. D.C. Hurum, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 109, 977 (2005)

    Article  Google Scholar 

  36. S.L. Xiong, B.J. Xi, C.M. Wang, X.Y. Liu, Y.T. Qian, Chem. Eur. J. 13, 7926 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heqing Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, S., Yang, H., Cui, M. et al. Monodisperse rutile TiO2 nanorod-based microspheres with various diameters: hydrothermal synthesis, formation mechanism and diameter- and crystallinity-dependent photocatalytic properties. Appl. Phys. A 104, 149–158 (2011). https://doi.org/10.1007/s00339-010-6085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6085-2

Keywords

Navigation