Wavelength dependent mass-specific optical absorption coefficients of laser generated coal aerosols determined from multi-wavelength photoacoustic measurements


Mass-specific optical absorption coefficients (MSOAC) of aerosols generated from samples of coal used for residential purposes by UV laser ablation are measured as a function of wavelength with the help of a novel multi-wavelength photoacoustic system operating at 266, 355, 532, and 1064 nm wavelengths. The spectral dependencies of the measured MSOAC are quantified by assuming a power-law wavelength dependence (i.e. with the help of Ångström exponents). The MSOAC and the Ångström exponents of the investigated residential coal samples vary between 2.9 and 26.6 m2/g, and 1.05 and 2.05, respectively. Furthermore it is shown that in the UV region MSOAC deviate characteristically from the wavelength dependence found in the visible and in the near-infrared ranges. These findings underline the uniqueness of the used multi-wavelength photoacoustic system, as no other instrument can measure in such a wide wavelength range. Therefore, this photoacoustic system has a potential to unambiguously differentiate between these (and other) types of aerosols. Supplementary scanning electron microscopy measurements indicate that the measured aerosols mimic those that are generated during residential coal burning and have a large impact on the global radiation budget of the Earth, yet they have not been sufficiently characterized.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    V. Ramanathan, P.J. Crutzen, J.T. Kiehl, D. Rosenfeld, Science 294, 5549 (2001)

    Article  Google Scholar 

  2. 2.

    H. Horvath, Atmos. Environ. 27, 3 (1993)

    Google Scholar 

  3. 3.

    U. Lohmann, J. Feichter, Atmos. Chem. Phys. 5, 715–737 (2005)

    ADS  Article  Google Scholar 

  4. 4.

    M. Schnaiter, H. Horvath, O. Möhler, K.H. Naumann, H. Saathoff, O.W. Schock, J. Aerosol Sci. 34, 1421–1444 (2003)

    Article  Google Scholar 

  5. 5.

    D.A. Lack, X.X. Tie, N.D. Bofinger, A.N. Wiegand, S. Madronich, J. Geophys. Res. 109, D03203 (2004)

    Article  Google Scholar 

  6. 6.

    IPCC Third Assessment Report (2001)

  7. 7.

    S.E. Schwartz, J. Air Waste Manag. Assoc. 54, 1351–1359 (2004)

    Google Scholar 

  8. 8.

    M. Schnaiter, O. Schmid, A. Petzold, L. Fritzsche, K.-F. Klein, M.O. Andreae, G. Helas, A. Thielmann, M. Gimmler, O. Möhler, C. Linke, U. Schurath, Aerosol Sci. Technol. 39, 249–260 (2005)

    Article  Google Scholar 

  9. 9.

    A. Petzold, R. Busen, F.P. Schröder, R. Baumann, M. Kuhn, J. Ström, D.E. Hagen, P.D. Whitefield, D. Baumgardner, F. Arnold, S. Borrmann, U. Schumann, J. Geophys. Res. 102, 29 (1997)

    Article  Google Scholar 

  10. 10.

    E. Weingartner, H. Saatho, M. Schnaiter, N. Streit, B. Bitnar, U. Baltensperger, Aerosol Sci. 34, 1445–1463 (2003)

    Article  Google Scholar 

  11. 11.

    W.P. Arnott, K. Hamasha, H. Moosmüller, P.J. Sheridan, J.A. Ogren, Aerosol Sci. Technol. 39, 17–29 (2005)

    Article  Google Scholar 

  12. 12.

    J. Hansen, A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, J. Lerner, AGU Geophys. Monogr. 29, 5 (1984)

    Google Scholar 

  13. 13.

    B.A. Bodhaine, J. Geophys. Res. 100, 8967–8975 (1995)

    ADS  Article  Google Scholar 

  14. 14.

    T.C. Bond, T.L. Anderson, D. Campbell, Aerosol Sci. Technol. 30, 582–600 (1999)

    Article  Google Scholar 

  15. 15.

    L. Krämer, Z. Bozoki, R. Niessner, Anal. Sci. 17 (2001). Special Issue

  16. 16.

    W.P. Arnott, H. Moosmüller, C.F. Rogers, T. Jin, R. Bruch, Atmos. Environ. 33, 2845–2852 (1999)

    Article  Google Scholar 

  17. 17.

    A. Miklos, P. Hess, Rev. Sci. Instrum. 72, 2001 (1937–1955)

    Google Scholar 

  18. 18.

    K. Lewis, W.P. Arnott, H. Moosmüller, C.E. Wold, J. Geophys. Res. 113, D16203 (2008)

    ADS  Article  Google Scholar 

  19. 19.

    M.O. Andreae, World Survey of Climatology (Elsevier, Amsterdam, 1995)

    Google Scholar 

  20. 20.

    J. Hansen, M. Sato, J. Glascoe, R. Ruedy, Proc. Natl. Acad. Sci. 95, 4113–4120 (1998)

    ADS  Article  Google Scholar 

  21. 21.

    J. Hansen, L. Nazarenko, Proc. Natl. Acad. Sci. 101, 423–428 (2004)

    ADS  Article  Google Scholar 

  22. 22.

    J. Hansen, L. Nazarenko, R. Ruedy, M. Sato, J. Willis, A. Del Genio, D. Koch, A. Lacis, K. Lo, S. Menon, T. Novakov, Ju. Perlwitz, G. Russell, G.A. Schmidt, N. Tausnev, Science 308, 1431–1435 (2005)

    ADS  Article  Google Scholar 

  23. 23.

    V. Ramanathan, C. Chung, D. Kim, T. Bettge, L. Buja, J.T. Kiehl, W.M. Washington, Q. Fu, D.R. Sikka, M. Wild, Proc. Natl. Acad. Sci. 102(15), 5326–5333 (2005)

    ADS  Article  Google Scholar 

  24. 24.

    W. Cooke, C. Liousse, H. Cahier, J. Feichter, J. Geophys. Res. 104, 22137–22162 (1999)

    ADS  Article  Google Scholar 

  25. 25.

    T.C. Bond, Light absorption by primary particles from fossil-fuel combustion: implications for radiative forcing. Ph.D. Dissertation, University of Washington, 2000

  26. 26.

    C. Liousse, J.E. Penner, C. Chuang, J.J. Walton, H. Eddleman, H. Cachier, J. Geophys. Res. 101, 19 (1996)

    Article  Google Scholar 

  27. 27.

    D.G. Streets, S. Gupta, S.T. Waldhoff, M.Q. Wang, T.C. Bond, Y. Bo, Atmos. Environ. 35, 4281–4296 (2001)

    Article  Google Scholar 

  28. 28.

    T.C. Bond, D.S. Covert, J.C. Kramlich, T.V. Larson, R.J. Charlson, J. Geophys. Res. 107, 8347 (2002)

    Article  Google Scholar 

  29. 29.

    M.O. Andreae, A. Gelencsér, Atmos. Chem. Phys. 6, 3131–3148 (2006)

    ADS  Article  Google Scholar 

  30. 30.

    B. Schmid, R. Ferrare, C. Flynn, R. Ellenman, D. Covert, A. Strawa, E. Welton, D. Turner, H. Jonsson, J. Redermann, J. Eilers, K. Ricci, A.G. Hallar, M. Clayton, J. Michalsky, A. Smirnov, B. Holben, J. Barnard, J. Geophys. Res. 111, D05S072006 (2006)

    Article  Google Scholar 

  31. 31.

    C.A. Booth, D.A. Spears, P. Krause, A.G. Cox, Fuel 78, 14 (1999)

    Article  Google Scholar 

  32. 32.

    I. Rodushkin, M.D. Axelsson, E. Burman, Talanta 51, 4 (2000)

    Article  Google Scholar 

  33. 33.

    L. Kleiber, H. Fink, R. Niessner, U. Panne, Anal. Bioanal. Chem. 374, 109–114 (2002)

    Article  Google Scholar 

  34. 34.

    A. Petzold, H. Schloesser, P.J. Sheridan, W.P. Arnott, J.A. Ogren, A. Virkkula, Aerosol Sci. Technol. 39, 40–51 (2005)

    Article  Google Scholar 

  35. 35.

    S. Voigt, J. Orphal, J.P. Burrows, J. Photochem. Photobiol. A, Chem. 149, 1–7 (2002)

    Article  Google Scholar 

  36. 36.

    W.P. Arnott, H. Moosmüller, J.W. Walker, Rev. Sci. Instrum. 71, 4545–4552 (2000)

    ADS  Article  Google Scholar 

  37. 37.

    C. Linke, O. Möhler, A. Veres, Á. Mohácsi, Z. Bozóki, G. Szabó, M. Schnaiter, Atmos. Chem. Phys. 6, 3315–3323 (2006)

    ADS  Article  Google Scholar 

  38. 38.

    T.C. Bond, G. Habib, R.W. Bergstrom, J. Geophys. Res. 111, D20211 (2006)

    ADS  Article  Google Scholar 

  39. 39.

    M. Schnaiter, M. Gimmler, I. Llamas, C. Linke, C. Jager, H. Mutschke, Atmos. Chem. Phys. 6, 2981–2990 (2006)

    ADS  Article  Google Scholar 

  40. 40.

    H. Moosmüller, R.K. Chakrabarty, W.P. Arnott, J. Quant. Spectrosc. Radiat. Transf. 110, 844–878 (2009)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ágnes Filep.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ajtai, T., Filep, Á., Kecskeméti, G. et al. Wavelength dependent mass-specific optical absorption coefficients of laser generated coal aerosols determined from multi-wavelength photoacoustic measurements. Appl. Phys. A 103, 1165–1172 (2011). https://doi.org/10.1007/s00339-010-6068-3

Download citation


  • Black Carbon
  • Optical Absorption
  • Graphite Sample
  • Residential Coal
  • Count Median Diameter