Advertisement

Applied Physics A

, Volume 102, Issue 1, pp 141–145 | Cite as

Solidification mechanism transition of liquid Co–Cu–Ni ternary alloy

  • D. Y. Zang
  • H. P. Wang
  • F. P. Dai
  • D. Langevin
  • B. WeiEmail author
Article

Abstract

We report a solidification mechanism transition of liquid ternary Co45Cu45Ni10 alloy when it solidifies at a critical undercooling of about 344 K. When undercooling at ΔT<344 K, the solidification process is characterized by primary S (Co) dendritic growth and a subsequent peritectic transition. The dendritic growth velocity of S (Co) dendrite increases with the rise of undercooling. However, once ΔT>344 K, the solidification velocity decreases with the increase of undercooling. In this case, liquid/liquid phase separation takes place prior to solidification. The minor L2 (Cu) droplets hinder the motion of the solidification front, and a monotectic transition may occur in the major L1 phase. These facts caused by metastable phase separation are responsible for the slow growth at high undercoolings.

Keywords

Phase Separation Growth Velocity 45Cu 45Ni Dendritic Growth Solute Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Nakagawa, Acta Metall. 6, 704 (1958) CrossRefGoogle Scholar
  2. 2.
    M. Rubinstein, V.G. Harris, B.N. Das, N.C. Koon, Phys. Rev. B 50, 12550 (1994) CrossRefADSGoogle Scholar
  3. 3.
    M.G.M. Miranda, E. Estévez-Rams, G. Martínez, M.N. Baibich, Phys. Rev. B 68, 014434 (2003) CrossRefADSGoogle Scholar
  4. 4.
    P.F. Ladwig, J.D. Olson, J.H. Bunton, D.J. Larson, R.M. Ulfig, R.L. Martens, T.T. Gribb, T.F. Kelly, M.C. Bonsager, A.E. Schultz, B.B. Pant, Y.A. Chang, Appl. Phys. Lett. 87, 121912 (2005) CrossRefADSGoogle Scholar
  5. 5.
    M. Palumbo, S. Curiotto, L. Battezzati, Comput. Coupling Phase Diagrams Thermochem. 30, 171 (2006) Google Scholar
  6. 6.
    P. Krasnochtchekov, R.S. Averback, P. Bellon, Phys. Rev. B 72, 174102 (2005) CrossRefADSGoogle Scholar
  7. 7.
    F.P. Dai, B. Wei, Chin. Sci. Bull. 54, 1287 (2009) CrossRefGoogle Scholar
  8. 8.
    S.K. Ghosh, A.K. Grover, P. Chowdhury, S.K. Gupta, G. Ravikumar, D.K. Aswal, M. Senthil Kumar, R.O. Dusane, Appl. Phys. Lett. 89, 132507 (2006) CrossRefADSGoogle Scholar
  9. 9.
    Z.B. Sun, X.P. Song, Z.D. Hua, G.Y. Liang, S. Yang, R.F. Cochrane, J. Alloys Compd. 319, 276 (2001) CrossRefGoogle Scholar
  10. 10.
    S. Curiotto, L. Battezzati, E. Johnson, N. Pryds, Acta Mater. 55, 6642 (2007) CrossRefGoogle Scholar
  11. 11.
    J.Z. Zhao, L. Ratke, Scr. Mater. 50, 543 (2004) CrossRefGoogle Scholar
  12. 12.
    J. He, J.Z. Zhao, L. Ratke, Acta Mater. 54, 1749 (2006) CrossRefGoogle Scholar
  13. 13.
    J. Lipton, W. Kurz, R. Trivedi, Acta Metall. 35, 957 (1987) CrossRefGoogle Scholar
  14. 14.
    P.R. Algoso, W.H. Hofmeister, R.J. Bayuzick, Acta Mater. 51, 4307 (2003) CrossRefGoogle Scholar
  15. 15.
    K. Drewes, K. Schaefers, M. Rösner-Kuhn, M.G. Frohberg, Mater. Sci. Eng. A 241, 99 (1998) CrossRefGoogle Scholar
  16. 16.
    H.P. Wang, W.J. Yao, B. Wei, Appl. Phys. Lett. 89, 201905 (2006) CrossRefADSGoogle Scholar
  17. 17.
    D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (CRC Press, Boca Raton, 1992) Google Scholar
  18. 18.
    J.Z. Xiao, K.K. Leung, H.W. Kui, Appl. Phys. Lett. 67, 3111 (1995) CrossRefADSGoogle Scholar
  19. 19.
    A. Karma, Int. J. Non-Equilib. Process 11, 201 (1998) Google Scholar
  20. 20.
    C.D. Cao, N. Wang, B. Wei, Sci. China Ser. A 43, 1318 (2000) CrossRefGoogle Scholar
  21. 21.
    R.T. Southin, G.M. Weston, J. Aust. Inst. Metals 18, 74 (1973) Google Scholar
  22. 22.
    K. Dragnevski, A.M. Mullis, D.J. Walker, R.F. Cochrane, Acta Mater. 50, 3743 (2002) CrossRefGoogle Scholar
  23. 23.
    M.J. Aziz, J. Appl. Phys. 53, 1158 (1982) CrossRefADSGoogle Scholar
  24. 24.
    X.H. Zhang, Y. Ruan, W.L. Wang, B. Wei, Sci. China Ser. G 50, 491 (2007) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • D. Y. Zang
    • 1
  • H. P. Wang
    • 1
  • F. P. Dai
    • 1
  • D. Langevin
    • 2
  • B. Wei
    • 1
    Email author
  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Laboratoire de Physique des SolidesUniversité Paris Sud and UMR CNRS 8502OrsayFrance

Personalised recommendations