Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Applied Physics A
  3. Article

Electrical resistivity of liquid binary and ternary alloys

  • Open Access
  • Published: 09 September 2010
  • volume 102, pages 379–385 (2011)
Download PDF

You have full access to this open access article

Applied Physics A Aims and scope Submit manuscript
Electrical resistivity of liquid binary and ternary alloys
Download PDF
  • M. Ornat1 &
  • A. Paja1 
  • 447 Accesses

  • 4 Citations

  • Explore all metrics

  • Cite this article

Abstract

New method of calculation of the electrical resistivity of liquid and amorphous alloys is presented. The method is based on the Morgan–Howson–S̆aub (MHS̆) model but the pseudopotentials are replaced by the scattering matrix operators. The Fermi energy is properly determined by the accurate values of the phase shifts. The model depends on a very small number of universal parameters and gives stable results. The calculated values of the resistivity agree well with available experimental data for a substantial number of binary alloys. Moreover, the results for some ternary alloys were also obtained.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. T.E. Faber, J.M. Ziman, Phil. Mag. 11, 153–173 (1965)

    Article  ADS  Google Scholar 

  2. N.W. Ashcroft, J. Lekner, Phys. Rev. 145, 83–90 (1966)

    Article  ADS  Google Scholar 

  3. N.W. Ashcroft, D.C. Langreth, Phys. Rev. 159, 685–692 (1967)

    Article  ADS  Google Scholar 

  4. M. Ornat, A. Paja, J. Phys., Condens. Matter 20, 375102 (2008)

    Article  Google Scholar 

  5. G.J. Morgan, M.A. Howson, K. S̆aub, J. Phys. F. Met. Phys. 15, 2157–2170 (1985)

    Article  ADS  Google Scholar 

  6. R. Evans, D.A. Greenwood, P. Lloyd, Phys. Lett. 35A, 57–58 (1971)

    ADS  Google Scholar 

  7. O. Dreirach, R. Evans, H.-J. Güintherodt, H.-U. Künzi, J. Phys. F. Met. Phys. 2, 709–725 (1972)

    Article  ADS  Google Scholar 

  8. A. BenAbdellah, J.G. Gasser, A. Makradi, B. Grosdidier, J. Hugel, Phys. Rev. B 68, 184201 (2003)

    Article  ADS  Google Scholar 

  9. A. BenAbdellah, B. Grosdidier, J.G. Gasser, J. Non-Cryst. Solids 353, 3200–3205 (2007)

    Article  ADS  Google Scholar 

  10. A. Paja, T. Stobiecki, Phys. Status Solidi B 125, K171–176 (1984)

    Article  ADS  Google Scholar 

  11. A. Paja, T. Stobiecki, Phys. Status Solidi B 134, 331–334 (1986)

    Article  ADS  Google Scholar 

  12. E. Esposito, H. Ehrenreich, C.D. Gelatt, Phys. Rev. B 18, 3913–3920 (1978)

    Article  ADS  Google Scholar 

  13. K. Hoshino, J. Phys., F Met. Phys. 13, 1981–1992 (1983)

    Article  ADS  Google Scholar 

  14. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980)

    Google Scholar 

  15. L.F. Mattheiss, Phys. Rev. 133, A1399–1403 (1964)

    Article  ADS  Google Scholar 

  16. G. Mukhopadhyay, A. Jain, V.K. Ratti, Solid State Commun. 13, 1623–1627 (1973)

    Article  ADS  Google Scholar 

  17. F.C. Herman, S. Skillman, Atomic Structure Calculations (Prentice Hall, New York, 1963)

    Google Scholar 

  18. T.E. Simos, P.S. Williams, Comput. Chem. 25, 77–82 (2001)

    Article  MATH  Google Scholar 

  19. P. Lloyd, Proc. Phys. Soc. 90, 207–216 (1967)

    Article  ADS  Google Scholar 

  20. A. Makradi, J.G. Gasser, J. Hugel, A. Yazi, M. Bestandji, J. Phys., Condens. Matter 11, 671–686 (1999)

    Article  ADS  Google Scholar 

  21. J. Auchet, A. Rhazi, J.G. Gasser, J. Phys., Condens. Matter 11, 3043–3501 (1998)

    Article  ADS  Google Scholar 

  22. S. Steeb, S. Woerner, Z. Metallk. 56, 771–775 (1965)

    Google Scholar 

  23. J.E. Enderby, J.B.V. Zytveld, R.A. Howe, A.J. Mian, Phys. Lett. 28, 144 (1968)

    Article  Google Scholar 

  24. M. Walhout, L. Haarsma, J.B.V. Zytveld, J. Phys., Condens. Matter 1, 2923–2934 (1989)

    Article  ADS  Google Scholar 

  25. J. Hennephof, W. van der Lugt, G.W. Wright, T. Mariën, Physica 61, 146–151 (1972)

    Article  ADS  Google Scholar 

  26. J. Hennephof, C. van der Marel, W. van der Lugt, Physica B+C 94, 101–104 (1978)

    Article  ADS  Google Scholar 

  27. N.S. Kurnakow, A.J. Nikitinsky, Z. Anorg. Allgem. Chem. 61, 146–151 (1972)

    Google Scholar 

  28. C. van der Marel, W. van der Lugt, J. Phys. F. Met. Phys. 10, 1177–1186 (1980)

    Article  ADS  Google Scholar 

  29. D.P. Love, F.C. Wang, C.L. Tsai, B.C. Geissen, T.O. Calloway, Comput. Chem. 90, 303–308 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Kraków, Poland

    M. Ornat & A. Paja

Authors
  1. M. Ornat
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Paja
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Paja.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Ornat, M., Paja, A. Electrical resistivity of liquid binary and ternary alloys. Appl. Phys. A 102, 379–385 (2011). https://doi.org/10.1007/s00339-010-6016-2

Download citation

  • Received: 20 April 2010

  • Accepted: 11 August 2010

  • Published: 09 September 2010

  • Issue Date: February 2011

  • DOI: https://doi.org/10.1007/s00339-010-6016-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Phase Shift
  • Electrical Resistivity
  • Fermi Energy
  • Ternary Alloy
  • Pair Correlation Function

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature