Skip to main content
Log in

Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We describe the optical power enhancement on the surface of the 2D (two-dimensional) periodic arrays of convex and concave gold nanostructures for comparing the characteristics of the nanostructures for surface-enhanced Raman spectroscopy (SERS) templates. The optical power enhancement is due to the surface plasmon polaritons, which is calculated by the Finite-Difference Time-Domain (FDTD) method at commercially-available 532 nm pump light. A periodic array of closely-packed gold particles is defined as convex nanostructure, while a periodic array of hemispherical holes, or voids, on gold substrate is defined as concave nanostructure. The peak power enhancement factor, the average power enhancement factor and the activity rate of each structure were compared. The convex nanostructures show a strong enhancement factor in localized hotspots, while the concave nanostructures show not only the peak power enhancement factor comparable to that of convex nanostructures, but also higher spatially-averaged power enhancement factors and activity rates than those observed on the convex nanostructures, meaning that the highly enhanced near-field zone distributes densely on the substrate. We also revealed the dependence of the void diameter on the inter-void distance for the power enhancement in the concave nanostructures system, providing a guideline for the fabrication of the efficient SERS template, which shows a strong power enhancement factor with a high area density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.F. Gamalii, J. Appl. Spectrosc. 62, 1001 (1995)

    ADS  Google Scholar 

  2. C.L. Haynes, C.R. Yonzon, X. Zhang, R.P. Van Duyne, J. Raman Spectrosc. 36, 471 (2005)

    Article  ADS  Google Scholar 

  3. M.D. Li, Y. Cui, M.X. Gao, J. Luo, B. Ren, Z.Q. Tian, Anal. Chem. 80, 5118 (2008)

    Article  Google Scholar 

  4. D.A. Stuart, C.R. Yonzon, X. Zhang, O. Lyandres, N.C. Shah, M.R. Glucksberg, J.T. Walsh, R.P. Van Duyne, Anal. Chem. 77, 4013 (2005)

    Article  Google Scholar 

  5. T. Bhuvana, G.V. Pavan Kumar, G.U. Kulkarni, C. Narayana, J. Phys. Chem. C 111, 6700 (2007)

    Article  Google Scholar 

  6. T. Vo-Dinh, L.R. Allain, D.L. Stokes, J. Raman Spectrosc. 33, 511 (2002)

    Article  ADS  Google Scholar 

  7. R.M. Jarvis, R. Goodacre, Anal. Chem. 76, 40 (2004)

    Article  Google Scholar 

  8. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, R.A. Tripp, Nano Lett. 6, 2630 (2006)

    Article  ADS  Google Scholar 

  9. N.N. Nedyalkov, P.A. Atanasov, M. Obara, Nanotechnology 18, 305703 (2007)

    Article  Google Scholar 

  10. N. Nedyalkov, T. Sakai, T. Miyanishi, M. Obara, Appl. Phys. Lett. 90, 123106 (2007)

    Article  ADS  Google Scholar 

  11. N. Nedyalkov, T. Sakai, T. Miyanishi, M. Obara, J. Phys. D, Appl. Phys. 39, 5037 (2006)

    Article  ADS  Google Scholar 

  12. N.N. Nedyalkov, H. Takada, M. Obara, Appl. Phys. A 85, 163 (2006)

    Article  ADS  Google Scholar 

  13. C. Mu, J.P. Zhang, D. Xu, Nanotechnology 21, 015604 (2010)

    Article  ADS  Google Scholar 

  14. M.E. Abdelsalam, P.N. Bartlett, J.J. Baumberg, S. Cintra, T.A. Kelf, A.E. Russell, Electrochem. Commun. 7, 740 (2005)

    Article  Google Scholar 

  15. R.M. Cole, J.J. Baumberg, F.J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, P.N. Bartlett, Nano Lett. 7, 2094 (2007)

    Article  ADS  Google Scholar 

  16. S. Mahajan, M. Abdelsalam, Y. Suguwara, S. Cintra, A. Russell, J. Baumberg, P. Bartlett, Phys. Chem. Chem. Phys. 9, 104 (2007)

    Article  Google Scholar 

  17. S. Mahajan, R.M. Cole, B.F. Soares, S.H. Pelfrey, A. Russell, J. Baumberg, P. Bartlett, J. Phys. Chem. C 113, 9284 (2009)

    Article  Google Scholar 

  18. Q. Yu, P. Guan, D. Qin, G. Golden, P.M. Wallace, Nano Lett. 8, 1923 (2008)

    Article  ADS  Google Scholar 

  19. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. (Artech House, Boston, 2000)

    MATH  Google Scholar 

  20. J. Jiang, K. Bosnick, M. Maillard, L. Brus, J. Phys. Chem. B 107, 9964 (2003)

    Article  Google Scholar 

  21. J. Nelayah, M. Kociak, O. Stephan, F.J. Garcia de Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L.M. Liz-Marzan, C. Colliex, Nat. Phys. 3, 348 (2007)

    Article  Google Scholar 

  22. S.A. Maier, M.L. Brongersma, P.G. Kik, H.A. Atwater, Phys. Rev. B 65, 193408 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Obara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenidaka, A., Tanaka, Y., Miyanishi, T. et al. Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates. Appl. Phys. A 103, 225–231 (2011). https://doi.org/10.1007/s00339-010-6002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6002-8

Keywords

Navigation