Skip to main content
Log in

Vibration of ZnO nanotubes: a molecular mechanics approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the vibrational properties of two kinds of single-wall ZnO nanotubes. The simulations are carried out for three types of zigzag nanotubes (5,0), (8,0), (10,0) and armchair nanotubes (3,3), (4,4), (6,6). The natural frequencies are determined by means of the molecular mechanics approach with the universal force field potential. The first four natural frequencies are obtained for length/diameter ratio of about 5–20. The vibration modes associated with these frequencies have been computed. Closed-form analytical expressions have been derived using the continuum shell theory for the physical explanations of the simulations results. We observe that the natural frequencies decrease as the aspect ratios increase. The results follow similar trends with results of previous studies for carbon nanotubes (CNT). However, the magnitudes of the frequencies are lower from the corresponding CNT counterparts, indicating that ZnO nanotubes are comparatively less stiff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Ozgur, Y. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S. Cho, H. Morkoc, J. Appl. Phys. 98(4), 041301 (2005)

    Article  ADS  Google Scholar 

  2. Z.C. Tu, X. Hu, Phys. Rev. B 74(3), 035434 (2006)

    Article  ADS  Google Scholar 

  3. D. Look, D. Reynolds, J. Sizelove, R. Jones, C. Litton, G. Cantwell, W. Harsch, Solid State Commun. 105(6), 399 (1998)

    Article  ADS  Google Scholar 

  4. Z. Fu-Chun, Z. Zhi-Yong, Z. Wei-Hu, Y. Jun-Feng, Y. Jiang-Ni, Chin. Phys. Lett. 26(1), 016105 (2009)

    Article  ADS  Google Scholar 

  5. Q. Wan, Z. Xiong, J. Dai, J. Rao, F. Jiang, Opt. Mater. 30, 817 (2008)

    Article  ADS  Google Scholar 

  6. Y. Yu-Rong, Y. Xiao-Hong, G. Zhao-Hui, D. Yu-Xiang, Chin. Phys. B 17(9), 3433 (2008)

    Article  ADS  Google Scholar 

  7. F. Decremps, F. Datchi, A. Saitta, A. Polian, S. Pascarelli, A. Di Cicco, J. Itie, F. Baudelet, Phys. Rev. B 68(10), 104101 (2003)

    Article  ADS  Google Scholar 

  8. Z. Tang, G. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72(25), 3270 (1998)

    Article  ADS  Google Scholar 

  9. Z. Wang, J. Phys. Condens. Matter 16(25), R829 (2004)

    Article  ADS  Google Scholar 

  10. Y. Sun, D.J. Riley, M.N.R. Ashfold, J. Phys. Chem. B 110(31), 15186 (2006)

    Article  Google Scholar 

  11. X.J. Liu, J.W. Li, Z.F. Zhou, L.W. Yang, Z.S. Ma, G.F. Xie, Y. Pan, C.Q. Sun, Appl. Phys. Lett. 94(13), 131902 (2009)

    Article  ADS  Google Scholar 

  12. W.F. Perger, J. Criswell, B. Civalleri, R. Dovesi, Comput. Phys. Commun. 180(10), 1753 (2009)

    Article  ADS  Google Scholar 

  13. J. Qi, D. Shi, B. Wang, Comput. Mater. Sci. 46(2), 303 (2009)

    Article  Google Scholar 

  14. H. Ni, X. Li, Nanotechnology 17(14), 3591 (2006)

    Article  ADS  Google Scholar 

  15. M. Arnold, P. Avouris, Z. Pan, Z. Wang, J. Phys. Chem. B 107(3), 659 (2003)

    Article  Google Scholar 

  16. R. Zhu, D. Wang, S. Xiang, Z. Zhou, X. Ye, Sens. Actuators A 154(2), 224 (2009). Special Issue

    Article  Google Scholar 

  17. A. Asthana, K. Momeni, A. Prasad, Y.K. Yap, R.S. Yassar, Appl. Phys. Lett. 95(17), 172106 (2009)

    Article  ADS  Google Scholar 

  18. R. Agrawal, H.D. Espinosa, J. Eng. Mater. Technol., Trans. ASME 131(4), 041208 (2009)

    Article  Google Scholar 

  19. A.V. Desai, M.A. Haque, Sens. Actuators A 134(1), 169 (2007). Special Issue

    Article  Google Scholar 

  20. M. Riaz, O. Nur, M. Willander, P. Klason, Appl. Phys. Lett. 92(10), 034309 (2008)

    Article  Google Scholar 

  21. M. Lucas, W. Mai, R. Yang, Z.L. Wang, E. Riedo, Nano Lett. 7(5), 1314 (2007)

    Article  ADS  Google Scholar 

  22. W. Mai, Z.L. Wang, Appl. Phys. Lett. 89(7), 073112 (2006)

    Article  ADS  Google Scholar 

  23. X. Bai, P. Gao, Z. Wang, E. Wang, Appl. Phys. Lett. 82(26), 4806 (2003)

    Article  ADS  Google Scholar 

  24. X. Shen, P.B. Allen, J.T. Muckerman, J.W. Davenport, J.C. Zheng, Nano Lett. 7(8), 2267 (2007)

    Article  ADS  Google Scholar 

  25. C. Chen, Y. Shi, Y. Zhang, J. Zhu, Y. Yan, Phys. Rev. Lett. 96(7), 075505 (2006)

    Article  ADS  Google Scholar 

  26. A. Kulkarni, M. Zhou, F. Ke, Nanotechnology 16(12), 2749 (2005)

    Article  ADS  Google Scholar 

  27. A.J. Kulkarni, M. Zhou, Acta Mech. Sin. 22(3), 217 (2006)

    Article  ADS  MATH  Google Scholar 

  28. Y. Sun, G. Fuge, N. Fox, D. Riley, M. Ashfold, Adv. Mater. 17(20), 2477 (2005)

    Article  Google Scholar 

  29. H. Li, Z.H. Jiang, Q. Jiang, Chem. Phys. Lett. 465(1–3), 78 (2008)

    ADS  Google Scholar 

  30. S. Erkoc, H. Kokten, Phys. E-Low-Dimens. Syst. Nanostruct. 28(2), 162 (2005)

    Article  ADS  Google Scholar 

  31. Z. Fan, J. Lu, J. Nanosci. Nanotechnol. 5(10), 1561 (2005)

    Article  Google Scholar 

  32. X. Kong, X. Sun, X. Li, Y. Li, Mater. Chem. Phys. 82(3), 997 (2003)

    Article  Google Scholar 

  33. H. Xu, F. Zhan, A.L. Rosa, T. Frauenheim, R.Q. Zhang, Solid State Commun. 148(11–12), 534 (2008)

    Article  ADS  Google Scholar 

  34. Y. Li, Z. Zhou, Y. Chen, Z. Chen, J. Chem. Phys. 130(20), 204706 (2009)

    Article  ADS  Google Scholar 

  35. C. Li, T.W. Chou, Int. J. Solids Struct. 40(10), 2487 (2003)

    Article  MATH  Google Scholar 

  36. K. Hashemnia, M. Farid, R. Vatankhah, Comput. Mater. Sci. 47(1), 79 (2009)

    Article  Google Scholar 

  37. F. Scarpa, S. Adhikari, J. Non-Cryst. Solids 354(35–39), 4151 (2008)

    Article  ADS  Google Scholar 

  38. S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Comput. Mech. 43(6), 731 (2009)

    Article  MATH  Google Scholar 

  39. H. Xu, R.Q. Zhang, X. Zhang, A.L. Rosa, T. Frauenheim, Nanotechnology 18(48), 485713 (2007)

    Article  Google Scholar 

  40. R. Chowdhury, S. Adhikari, F. Scarpa, Phys. E-Low-Dimens. Syst. Nanostruct. 42(8), 2036 (2010)

    Article  ADS  Google Scholar 

  41. Y. Xing, Z. Xi, X. Zhang, J. Song, R. Wang, J. Xu, Z. Xue, D. Yu, Solid State Commun. 129(10), 671 (2004)

    Article  ADS  Google Scholar 

  42. A. Wei, X. Sun, C. Xu, Z. Dong, M. Yu, W. Huang, Appl. Phys. Lett. 88(21), 213102 (2006)

    Article  ADS  Google Scholar 

  43. Z. Zhou, Y. Li, L. Liu, Y. Chen, S.B. Zhang, Z. Chen, J. Phys. Chem. C 112(36), 13926 (2008)

    Article  Google Scholar 

  44. B. Wang, S. Nagase, J. Zhao, G. Wang, Nanotechnology 18(34), 345706 (2007)

    Article  Google Scholar 

  45. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114(25), 10024 (1992)

    Article  Google Scholar 

  46. D.F. McIntosh, Theor. Chem. Acc., Theory Comput. Model. 125(3–6), 177 (2010)

    Google Scholar 

  47. R. Chowdhury, S. Adhikari, C.Y. Wang, F. Scarpa, Comput. Mater. Sci. 48(4), 730 (2010)

    Article  Google Scholar 

  48. W. Soedel, Vibration of Shells and Plates, 3rd edn. (Marcel Dekker, New York, 2004)

    Google Scholar 

  49. F. Scarpa, C.W. Smith, M. Ruzzene, K. Wadee, Phys. Stat. Solidi B 245(3), 584 (2008)

    Article  ADS  Google Scholar 

  50. S.M. Jeong, M. Ruzzene, Shock Vib. 11(3–4), 311 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, R., Adhikari, S. & Scarpa, F. Vibration of ZnO nanotubes: a molecular mechanics approach. Appl. Phys. A 102, 301–308 (2011). https://doi.org/10.1007/s00339-010-5995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5995-3

Keywords

Navigation