Skip to main content

Laser ablation of thin molybdenum films on transparent substrates at low fluences


The selective structuring of thin molybdenum (Mo) films is a major challenge for the monolithic interconnection of CIS thin film solar cells during their production. Here we present the structuring of ca. 0.5 μm thin molybdenum films on glass substrates with picosecond laser pulses (pulse duration 10 ps, wavelength 1064 nm) without any visible thermal effect on both, the remaining film and the substrate material. When the molybdenum film is irradiated from the transparent substrate side with a fluence level below 1 J/cm2 a “lift-off” process is initiated, which seems to be induced by a direct effect in the removed molybdenum film. At that fluence level, the energy input per ablated volume of ca. 30 J/mm3 is much less than would be needed for a thermodynamic heating, melting and vaporization of the complete film with ca. 78 J/mm3. Therefore we conclude that the molybdenum is only evaporated partially. Parts of the ablated Mo-film can be found as structurally intact debris. We assume that partial melting and vaporization with high-pressure formation play an important role during that picosecond laser ablation without thermal side effects. Due to its remarkable physical nature we called that process “directly induced laser ablation”.

This is a preview of subscription content, access via your institution.


  1. 1.

    B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tuennermann, Appl. Phys. A, Mater. Sci. Process. 63, 109 (1997)

    ADS  Google Scholar 

  2. 2.

    S. Nolte, C. Momma, H. Jacobs, A. Tuennermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B, Opt. Phys. 14, 2716 (1997)

    Article  ADS  Google Scholar 

  3. 3.

    P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao, Phys. Rev. Lett. 61, 2886 (1988)

    Article  ADS  Google Scholar 

  4. 4.

    A.P. Kanavin, I.V. Smetanin, V.A. Isakov, Y.V. Afanasiev, B.N. Chichkov, B. Wellegehausen, S. Nolte, C. Momma, A. Tuennermann, Phys. Rev. B, Condens. Matter Mater. Phys. 57, 14698 (1998)

    Article  ADS  Google Scholar 

  5. 5.

    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’Man, Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  6. 6.

    G. Paltauf, P.E. Dyer, Chem. Rev. 103, 487 (2003)

    Article  Google Scholar 

  7. 7.

    S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A, Mater. Sci. Process. 61 (1995)

  8. 8.

    S. Zoppel, H. Huber, G.A. Reider, Appl. Phys. A, Mater. Sci. Process. 89, 161 (2007)

    Article  ADS  Google Scholar 

  9. 9.

    S. Hermann, N.P. Harder, R. Brendel, D. Herzog, H. Haferkamp, Appl. Phys. A, Mater. Sci. Process. 1 (2009)

  10. 10.

    H.P. Huber, M. Englmaier, C. Hellwig, G. Heise, M. Kemnitzer, T. Kuznicki, C. Menhard, R. Brenning, A. Heiss, H. Vogt, J. Palm, in Proceedings of 24rd EUPVSEC (2009)

  11. 11.

    H.P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, J. Palm, in Proceedings of SPIE Commercial and Biomedical Applications of Ultrafast Lasers IX, vol. 7203 (2009)

  12. 12.

    H.P. Huber, F. Herrnberger, S. Kery, S. Zoppel, Proceedings of SPIE Vol. 6881 (2008)

  13. 13.

    F.H. Karg, Sol. Energy Mater. Solar Cells 66 (2001)

  14. 14.

    B. Dimmler, H.W. Schock, Prog. Photovolt. 4, 425 (1996)

    Article  Google Scholar 

  15. 15.

    J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, P. Alloncle, J. Phys. D, Appl. Phys. 39, 453 (2006)

    Article  ADS  Google Scholar 

  16. 16.

    L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.O. Velthaus, H.W. Schock, Appl. Phys. Lett. 62, 597 (1993)

    Article  ADS  Google Scholar 

  17. 17.

    C. Molpeceres, S. Lauzurica, J.L. Ocana, J.J. Gandia, L. Urbina, J. Carabe, J. Micromech. Microeng. 15, 1271 (2005)

    Article  ADS  Google Scholar 

  18. 18.

    A.D. Compaan, I. Matulionis, S. Nakade, Opt. Lasers Eng. 34, 15 (2000)

    Article  Google Scholar 

  19. 19.

    R. Mayerhofer, L. Muellers, A. Becker, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4 1, 1115 (2007)

  20. 20.

    A.B. Bullock, P.R. Bolton, J. Appl. Phys. 85, 460 (1999)

    Article  ADS  Google Scholar 

  21. 21.

    S. Beyer, V. Tornari, D. Gornicki, Proc. SPIE 5063, 202 (2003)

    Article  ADS  Google Scholar 

  22. 22.

    J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  23. 23.

    D.R. Lide, Handbook of Chemistry and Physics (2004)

  24. 24.

    R. Iffländer, Solid-State Lasers for Materials Processing (Springer, Berlin, 2001)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gerhard Heise.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heise, G., Englmaier, M., Hellwig, C. et al. Laser ablation of thin molybdenum films on transparent substrates at low fluences. Appl. Phys. A 102, 173–178 (2011).

Download citation


  • Laser Ablation
  • Front Side
  • Ablation Threshold
  • Ultrafast Laser
  • Ablate Volume