Skip to main content

Electrical and optical properties of ITO and ITO/Cr-doped ITO films

Abstract

In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV–Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as ∼4×10−4 Ω cm, an energy gap of ∼4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (∼0.4–0.5 nm) and resistivity (up to ∼8×10−4 Ω cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Kois, S. Bereznev, J. Raudoja, E. Mellikov, A. Öpik, Sol. Energy Mater. Sol. Cells 87, 657 (2005)

    Article  Google Scholar 

  2. 2.

    S.I. Boiadjiev, G.H. Dobrikov, M.M.M. Rassovska, Thin Solid Films 515, 8465 (2007)

    Article  ADS  Google Scholar 

  3. 3.

    A.S. Hovhannisyan, J. Contemp. Phys. 43, 1068 (2008)

    Google Scholar 

  4. 4.

    S.-M. Lee, Y.-S. Lee, C.-H. Shim, N.-J. Choi, B.-S. Joo, K.-D. Song, J.-S. Huh, D.-D. Lee, Sens. Actuators B 93, 31 (2003)

    Article  Google Scholar 

  5. 5.

    J. Chae, S. Appasamy, K. Jain, Appl. Phys. Lett. 90, 261102 (2007)

    Article  ADS  Google Scholar 

  6. 6.

    H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films (Institute of Physics, Philadelphia, 1995)

    Google Scholar 

  7. 7.

    C.W. Tang, S.A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  Google Scholar 

  8. 8.

    S. Lattante, F. Romano, A.P. Caricato, M. Martino, M. Anni, Appl. Phys. Lett. 89, 031108 (2006)

    Article  ADS  Google Scholar 

  9. 9.

    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  10. 10.

    S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, J. Appl. Phys. 93, 1 (2003)

    Article  ADS  Google Scholar 

  11. 11.

    W. Prellier, A. Fouchet, B. Mercey, J. Phys., Condens. Matter 15, R1583 (2003)

    Article  ADS  Google Scholar 

  12. 12.

    D.D. Awschalom, R.K. Kawakami, Nature 408, 923 (2000)

    Article  ADS  Google Scholar 

  13. 13.

    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  14. 14.

    K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nat. Mater. 5, 291 (2006)

    Article  ADS  Google Scholar 

  15. 15.

    J. Philip, A. Punnoose, B.I. Kim, K.M. Reddy, S. Layne, J.O. Holmes, B. Satpati, P.R. Leclair, T.S. Santos, J.S. Moodera, Nat. Mater. 5, 298 (2006)

    Article  ADS  Google Scholar 

  16. 16.

    A. Gupta, H. Cao, K. Parekh, K.V. Rao, A.R. Raju, U.V. Waghmare, J. Appl. Phys. 101, 09N513 (2007)

    Article  Google Scholar 

  17. 17.

    S. Hu, S. Yan, X. Lin, X. Yao, Y. Chen, G. Liu, L. Mei, Appl. Phys. Lett. 91, 262514 (2007)

    Article  ADS  Google Scholar 

  18. 18.

    J. He, S. Xu, Y.K. Yoo, Q. Xue, H.-C. Lee, S. Cheng, X.-D. Xiang, G. Dionne, I. Takeuchi, Appl. Phys. Lett. 86, 052503 (2005)

    Article  ADS  Google Scholar 

  19. 19.

    Y.K. Yoo, Q. Xue, H.-C. Lee, S. Cheng, X.-D. Xiang, G. Dionne, S. Xu, J. He, Y.S. Chu, S.D. Preite, S.E. Lofland, I. Takeuchi, Appl. Phys. Lett. 86, 042506 (2005)

    Article  ADS  Google Scholar 

  20. 20.

    J. Philip, N. Theodoropoulou, G. Berera, J.S. Moodera, B. Satpati, Appl. Phys. Lett. 85, 777 (2004)

    Article  ADS  Google Scholar 

  21. 21.

    N.H. Hong, J. Sakai, N.T. Huong, V. Brizé, Appl. Phys. Lett. 87, 102505 (2005)

    Article  ADS  Google Scholar 

  22. 22.

    N.H. Hong, J. Sakai, N.T. Huong, V. Brizé, J. Magn. Magn. Mater. 302, 228 (2006)

    Article  ADS  Google Scholar 

  23. 23.

    G. Peleckis, X.L. Wang, S.X. Dou, J. Magn. Magn. Mater. 301, 308 (2006)

    Article  ADS  Google Scholar 

  24. 24.

    G. Peleckis, X.L. Wang, S.X. Dou, Appl. Phys. Lett. 88, 132507 (2006)

    Article  ADS  Google Scholar 

  25. 25.

    S.-M. Park, T. Ikegami, K. Ebihara, Jpn. J. Appl. Phys. 44, 8027 (2005)

    Article  ADS  Google Scholar 

  26. 26.

    X. Li, Q. Zhang, W. Miao, L. Huang, Z. Zhang, Thin Solid Films 515, 2471 (2006)

    Article  ADS  Google Scholar 

  27. 27.

    J. Stankiewicz, F. Villuendas, J. Bartolomé, Phys. Rev. B 75, 235308 (2007)

    Article  ADS  Google Scholar 

  28. 28.

    T. Nakamura, K. Tanabe, K. Tsureishi, K. Tachibana, J. Appl. Phys. 101, 09H105 (2007)

    Article  Google Scholar 

  29. 29.

    H.S. Kim, S.H. Ji, H. Kim, D. Kim, S.K. Yoon, W.K. Choo, in Magnetics Conference, 2005. INTERMAG Asia 2005. Digests of the IEEE International, pp. 281–282, 4–8 April 2005

  30. 30.

    F.F. Ngaffo, A.P. Caricato, A. Fazzi, M. Fernandez, S. Lattante, M. Martino, F. Romano, Appl. Surf. Sci. 248, 428 (2005)

    Article  ADS  Google Scholar 

  31. 31.

    F.F. Ngaffo, A.P. Caricato, M. Fernandez, M. Martino, F. Romano, Appl. Surf. Sci. 253, 6508 (2007)

    Article  ADS  Google Scholar 

  32. 32.

    H.S. Kim, S.H. Ji, H. Kim, S.-K. Hong, D. Kim, Y.E. Ihm, W.K. Choo, Solid State Commun. 137, 41 (2006)

    Article  ADS  Google Scholar 

  33. 33.

    H. Kim, J.S. Horwitz, G. Kushto, A. Piqué, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, J. Appl. Phys. 88, 6021 (2000)

    Article  ADS  Google Scholar 

  34. 34.

    J.S. Kim, F. Cacialli, A. Cola, G. Gigli, R. Cingolani, Appl. Phys. Lett. 75, 19 (1999)

    Article  ADS  Google Scholar 

  35. 35.

    W.-C. Chang, S.-C. Lee, C.-H. Yang, T.-C. Lin, Mater. Sci. Eng. B 153, 57 (2008)

    Google Scholar 

  36. 36.

    J. Tauc, R. Grigorovici, A. Yancu, Phys. Status Solidi 15, 627 (1996)

    Article  Google Scholar 

  37. 37.

    F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  38. 38.

    H. Raebiger, S. Lany Zunger, Phys. Rev. B 79, 165202 (2009)

    Article  ADS  Google Scholar 

  39. 39.

    T. Pankaj, A.G. Vedeshwar, Bull. Mater. Sci. 24, 297 (2001)

    Article  Google Scholar 

  40. 40.

    J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. P. Caricato.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caricato, A.P., Cesaria, M., Luches, A. et al. Electrical and optical properties of ITO and ITO/Cr-doped ITO films. Appl. Phys. A 101, 753–758 (2010). https://doi.org/10.1007/s00339-010-5988-2

Download citation

Keywords

  • Atomic Force Microscopy
  • Pulse Laser Deposition
  • Indium Oxide
  • Chromium Oxide
  • Visible Transmission