Skip to main content
Log in

Characteristics of γ-Al2O3 nanoparticles generated by continuous-wave laser ablation in liquid

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser ablation in liquid is one of the most widely investigated methods for generating various nanoparticles (NPs) that are difficult to produce using other means. In this paper, we report the generation of Al-oxide NPs by continuous-wave (CW) fibre laser ablation of corundum (α-Al2O3) target submerged in deionised water. The effects of CW fibre laser power and radiation time have been investigated. Characterisation of the NPs generated, in terms of size, size distribution, shape, chemical composition, and phase structure, was carried out by means of high-resolution transmission electron microscopy (HR-TEM), high angle annular dark field (HAADF) in scanning-transmission (STEM) mode, energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The results show that the average size of Al-oxide NPs, in the range of 17 to 29 nm, increased with increasing the laser power and laser exposure time, and the NPs are dominated by stoichiometric γ-Al2O3 with a minor phase of α-Al2O3. The mechanism involved in the CWLAL is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Levin, L.A. Bendersky, D.G. Brandon, M. Rühle, Acta Mater. 45, 3659 (1997)

    Article  Google Scholar 

  2. J.M. McHale, A. Auroux, J. Perrotta, A. Navrotsky, Science 277, 788 (1997)

    Article  Google Scholar 

  3. D.J. Suh, T.-J. Park, J.-H. Kim, K.-L. Kim, Chem. Mater. 9, 1997 (1903)

    Google Scholar 

  4. J.R. Jensen, T. Johannessen, S. Wedel, H. Livbjerg, J. Nanopart. Res. 2, 363 (2000)

    Article  Google Scholar 

  5. T. Johannessen, S.E. Pratsinis, H. Livbjerg, Chem. Eng. Sci. 55, 177 (2000)

    Article  Google Scholar 

  6. P.V. Ananthapadmanabhan, T.K. Thiyagarajan, K.P. Sreekumar, N. Venkatramani, Scr. Mater. 50, 143 (2004)

    Article  Google Scholar 

  7. J.M. Wu, Mater. Lett. 48, 324 (2001)

    Article  Google Scholar 

  8. Y.-q. Wu, Y.-f. Zhang, X.-x. Huang, J.-k. Guo, Ceram. Int. 27, 265 (2001)

    Article  Google Scholar 

  9. R. Sivarajan, S. Elena, C. Baruch, C. Rachman, G. Aharon, J. Am. Ceram. Soc. 83, 89 (2000)

    Article  Google Scholar 

  10. G.W. Scherer, J. Non-Cryst. Solids 73, 661 (1985)

    Article  ADS  Google Scholar 

  11. S. Mende, F. Stenger, W. Peukert, J. Schwedes, J. Mater. Sci. 39, 5223 (2004)

    Article  ADS  Google Scholar 

  12. K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai, W. Jiang, J. Nanopart. Res. 2, 75 (2000)

    Article  Google Scholar 

  13. P. Chiennan, C. Shuei-Yuan, S. Pouyan, J. Phys. Chem. B 110, 24340 (2006)

    Article  Google Scholar 

  14. G.W. Yang, Prog. Mater. Sci. 52, 648 (2007)

    Article  Google Scholar 

  15. S.Z. Khan, Y. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, K. Watkins, J. Nanopart. Res. 11, 1421 (2009)

    Article  Google Scholar 

  16. Z. Liu, Y. Yuan, S.Z. Khan, A. Abdolvand, D. Whitehead, M. Schmidt, L. Li, J. Micromech. Microeng. 19, 54008 (2009)

    Article  Google Scholar 

  17. P. Chiennan, S.Y. Chen, P. Shen, J. Cryst. Growth 299, 393 (2007)

    Article  ADS  Google Scholar 

  18. P. Moreno, C. Mendez, A. Garcia, G. Torchia, D. Delgado, J.R. Vazquez de Aldana, I. Arias, L. Roso, J. Nanosci. Nanotechnol. 6, 2006 (1961)

    Google Scholar 

  19. A.V. Kabashin, M. Meunier, J. Appl. Phys. 94, 7941 (2003)

    Article  ADS  Google Scholar 

  20. J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, Appl. Phys. A 80, 753 (2005)

    Article  ADS  Google Scholar 

  21. W.T. Nichols, T. Sasaki, N. Koshizaki, J. Appl. Phys. 100, 114912 (2006)

    Article  ADS  Google Scholar 

  22. F. Mafune, J.-y. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 9111 (2000)

    Article  Google Scholar 

  23. D. Bauerle, Laser Processing and Chemistry (Springer, Berlin, 1996)

    Google Scholar 

  24. L. Yali, T. Ishigaki, J. Cryst. Growth 242, 511 (2002)

    Article  Google Scholar 

  25. R. McPherson, J. Mater. Sci. 8, 851 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.Z., Liu, Z. & Li, L. Characteristics of γ-Al2O3 nanoparticles generated by continuous-wave laser ablation in liquid. Appl. Phys. A 101, 781–787 (2010). https://doi.org/10.1007/s00339-010-5936-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5936-1

Keywords

Navigation