Skip to main content
Log in

Cathodoluminescence degradation of PLD thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The cathodoluminescence (CL) intensities of Y2SiO5:Ce3+, Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+ phosphor thin films that were grown by pulsed laser deposition (PLD) were investigated for possible application in low voltage field emission displays (FEDs) and other infrastructure applications. Several process parameters (background gas, laser fluence, base pressure, substrate temperature, etc.) were changed during the deposition of the thin films. Atomic force microscopy (AFM) was used to determine the surface roughness and particle size of the different films. The layers consist of agglomerated nanoparticle structures. Samples with good light emission were selected for the electron degradation studies. Auger electron spectroscopy (AES) and CL spectroscopy were used to monitor changes in the surface chemical composition and luminous efficiency of the thin films. AES and CL spectroscopy were done with 2 keV energy electrons. Measurements were done at 1×10−6 Torr oxygen pressure. The formation of different oxide layers during electron bombardment was confirmed with X-ray photoelectron spectroscopy (XPS). New non-luminescent layers that formed during electron bombardment were responsible for the degradation in light intensity. The adventitious C was removed from the surface in all three cases as volatile gas species, which is consistent with the electron stimulated surface chemical reaction (ESSCR) model. For Y2SiO5:Ce3+ a luminescent SiO2 layer formed during the electron bombardment. Gd2O3 and SrO thin films formed on the surfaces of Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+, respectively, due to ESSCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Lee, S.G. Oh, S.C. Yi, D.S. Seo, J.S. Yoo, J. Electrochem. Soc. 147, 3139 (2000)

    Article  Google Scholar 

  2. G.C. Kim, S.I. Mho, H.L. Park, J. Mater. Sci. Lett. 14, 805 (1995)

    Article  Google Scholar 

  3. L. Ozawa, Mater. Chem. Phys. 51, 107 (1997)

    Article  Google Scholar 

  4. K.T. Hillie, C. Curren, H.C. Swart, Appl. Surf. Sci. 177(1–2), 73 (2001)

    Article  ADS  Google Scholar 

  5. K.T. Hillie, H.C. Swart, Appl. Surf. Sci. 183(3–4), 304 (2001)

    Article  ADS  Google Scholar 

  6. S.Y. Seo, S. Lee, H.D. Park, N. Shin, K.S. Sohn, J. Appl. Phys. 92, 5248 (2002)

    Article  ADS  Google Scholar 

  7. J.C. Park, H.K. Moon, D.K. Kim, S.H. Byeon, B.C. Kim, K.S. Suh, Appl. Phys. Lett. 77(14), 2162 (2000)

    Article  ADS  Google Scholar 

  8. C.A. Michail, I.G. Valais, A.E. Toutountzis, N.E. Kalyvas, G.P. Fountos, P. George, S.L. David, I.S. Kandarakis, G.S. Panayiotakis, IEEE Trans. Nucl. Sci. 55(6), 3703 (2008)

    Article  ADS  Google Scholar 

  9. F.P. Glasser, L.S.D. Glasser, J. Am. Ceram. Soc. 46, 377 (1963)

    Article  Google Scholar 

  10. S.H.M. Poort, W.P. Blokpoel, G. Blasse, Chem. Mater. 7, 1547 (1995)

    Article  Google Scholar 

  11. T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, J. Electrochem. Soc. 143, 2670 (1996)

    Article  Google Scholar 

  12. E.J. Bosze, G.A. Hirata, L.E. Shea-Rohwer, J. McKittrick, J. Lumin. 104(1–2), 47 (2003)

    Article  Google Scholar 

  13. T. Aitasalo, J. Holsa, M. Lastusaari, J. Niittykoski, F. Pelle, Opt. Mater. 27, 1511 (2005)

    Article  ADS  Google Scholar 

  14. E. Coetsee, H.C. Swart, J.J. Terblans, O.M. Ntwaeaborwa, K.T. Hillie, W.A. Jordaan, U. Butner, Opt. Mater. 29, 1338 (2007)

    Article  ADS  Google Scholar 

  15. P.D. Nsimama, O.M. Ntwaeaborwa, E. Coetsee, H.C. Swart, Physica B, Condens. Matter 404(22), 4489 (2009)

    Article  ADS  Google Scholar 

  16. J.J. Dolo, H.C. Swart, J.J. Terblans, E. Coetsee, M.S. Dhlamini, O.M. Ntwaeaborwa, B.F. Dejene, Phys. Status Solidi C 5(2), 594 (2008)

    Article  ADS  Google Scholar 

  17. E. Coetsee, J.J. Terblans, H.C. Swart, J. Lum. 126, 37 (2007)

    Article  ADS  Google Scholar 

  18. F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy (ULVAC-PHI, Chigasaki, 1995), p. 57

    Google Scholar 

  19. L.N. Skuja, W. Entzian, Phys. Status Solidi A 96, 191 (1986)

    Article  ADS  Google Scholar 

  20. S. Dhara, C.-Y. Lu, K.G.M. Nair, K.-H. Chen, C.-P. Chen, Y.-F. Huang, C. David, L.-C. Chen, B. Raj, Nanotechnology 19, 395401 (2008)

    Article  Google Scholar 

  21. L. Linnros, A. Galeckas, N. Lalic, V. Grivickas, Thin Solid Films 297, 167 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Swart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swart, H.C., Coetsee, E., Terblans, J.J. et al. Cathodoluminescence degradation of PLD thin films. Appl. Phys. A 101, 633–638 (2010). https://doi.org/10.1007/s00339-010-5915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5915-6

Keywords

Navigation