Skip to main content

Deformation and failure mechanism of secondary cell wall in Spruce late wood

Abstract

The deformation and failure of the secondary cell wall of Spruce wood was studied by in-situ SEM compression of micropillars machined by the focused ion beam technique. The cell wall exhibited yield strength values of approximately 160 MPa and large scale plasticity. High resolution SEM imaging post compression revealed bulging of the pillars followed by shear failure. With additional aid of cross-sectional analysis of the micropillars post compression, a model for deformation and failure mechanism of the cell wall has been proposed. The cell wall consists of oriented cellulose microfibrils with high aspect ratio embedded in a hemicellulose-lignin matrix. The deformation of the secondary wall occurs by asymmetric out of plane bulging because of buckling of the microfibrils. Failure of the cell wall following the deformation occurs by the formation of a shear or kink band.

This is a preview of subscription content, access via your institution.

References

  1. L. Salmén, Micromechanical understanding of the cell wall structure. C. R. Biol. 327, 873–880 (2004)

    Article  Google Scholar 

  2. P. Fratzl, I. Burgert, H.S. Gupta, On the role of interface polymers for the mechanics of natural polymeric composites. Phys. Chem. Chem. Phys. 6, 5575–5579 (2004)

    Article  Google Scholar 

  3. J.M. Dinwoodie, Timber: Its Nature and Behaviour, ed. by E.F.N. Spom (Taylor and Francis, London, 2000)

    Chapter  Google Scholar 

  4. D.H. Page, F.El. Hosseiny, The mechanical properties of single wood pulp fibres. Part 6: Fibril angle and the shape of the stress-strain curve. J. Pulp Pap. Sci. 9, 99–100 (1983)

    Google Scholar 

  5. I.B. Sachs, Microscopic observations during longitudinal compression loading of single pulp fibres. Tappi J. 7, 98–102 (1986)

    Google Scholar 

  6. I. Burgert, M. Eder, K. Frühmann, J. Keckes, P. Fratzl, S. Stanzl-Tschegg, Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L. Karst]). Part 3: Mechanical characterisation. Holzforschung 59, 354–357 (2005)

    Article  Google Scholar 

  7. L. Mott, L. Groom, S. Shaler, Mechanical properties of individual southern pine fibres. Part II: Comparison of earlywood and latewood fibres with respect to tree height and juvenility. Wood Fiber Sci. 34(2), 221–237 (2002)

    Google Scholar 

  8. W. Gindl, H.S. Gupta, Cell wall hardness and Young’s modulus of melamine-modified spruce wood by nano-indentation. Composites, Part A 33, 1141–1145 (2002)

    Article  Google Scholar 

  9. S. Orso, U.G.K. Wegst, E. Arzt, The elastic modulus of spruce wood cell wall material measured by an in-situ bending technique. J. Mater. Sci. 41, 5122–5126 (2006)

    Article  ADS  Google Scholar 

  10. I. Duchesne, G. Daniel, The ultrastructure of wood fibre surfaces as shown by a variety of microscopical methods—a review. Nord. Pulp Pap. Res. J. 14(2), 129–139 (1999)

    Article  Google Scholar 

  11. B. Moser, K. Wasmer, L. Barbieri, J. Michler, Strength and fracture of Si micropillars: a new scanning electron microscopy-based micro-compression test. J. Mater. Res. Soc. 22(4), 1004–1011 (2007)

    Article  ADS  Google Scholar 

  12. H.C. Lichtenegger, A. Reiterer, S. Stanzl-Tschegg, P. Fratzl, Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J. Struct. Biol. 128, 257–269 (1999)

    Article  Google Scholar 

  13. I. Burgert, K. Frühmann, J. Keckes, P. Fratzl, S. Stanzl-Tschegg, Structure–function relationships of four compression wood types: micromechanical properties at the tissue and fibre level. Trees 18, 480–485 (2004)

    Article  Google Scholar 

  14. J. Keckes, I. Burgert, K. Frühmann, M. Müller, K. Kölln, N. Hamilton, M. Burghammer, S.V. Roth, S. Stanzl-Tschegg, P. Fratzl, Cell wall recovery after irreversible deformation of wood. Nat. Mater. 2, 810–814 (2003)

    Article  ADS  Google Scholar 

  15. W. Gindl, A. Teischinger, Axial compression strength of Norway spruce related to structural variability and lignin content. Composites, Part A 33, 1623–1628 (2002)

    Article  Google Scholar 

  16. W. Gindl, H.S. Gupta, T. Schöberl, H.C. Lichtenegger, P. Fratzl, Mechanical properties of spruce wood cell walls by nano-indentation. Appl. Phys. A 79, 2069–2073 (2004)

    Article  ADS  Google Scholar 

  17. A. Reiterer, S.E. Stanzl-Tschegg, Compressive behaviour of softwood under uniaxial loading at different orientations to the grain. Mech. Mater. 33, 705–715 (2001)

    Article  Google Scholar 

  18. T. Zimmermann, V. Thommen, P. Reimann, H.J. Hug, Ultrastructural appearance of embedded and polished wood cell walls as revealed by atomic force microscopy. J. Struct. Biol. 156(2), 363–369 (2006)

    Article  Google Scholar 

  19. J. Michler, K. Wasmer, S. Meier, F. Östlund, Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl. Phys. Lett. 90, 0431231 (2007)

    Article  Google Scholar 

  20. P. Hoffmeyer, R.B. Hanna, Electron beam damage during testing of wood in the SEM. Wood Sci. Technol. 23(3), 211–214 (1989)

    Article  Google Scholar 

  21. P.M. Moran, X.H. Liu, C.F. Shih, Kink band formation and band broadening in fibre composites under compressive loading. Acta Metall. Mater. 43, 2943–2958 (1995)

    Article  Google Scholar 

  22. J.M. Dinwoodie, Failure in Timber. Part 2: The angle of shear through the cell wall during longitudinal compression stressing. Wood Sci. Technol. 8, 56–67 (1974)

    Google Scholar 

  23. J.S. Poulsen, P.M. Moran, C.F. Shih, E. Byskov, Kink band initiation and band broadening in clear wood under compressive loading. Mech. Mater. 25, 67–77 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh-Babu Adusumalli.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 16 M)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adusumalli, RB., Raghavan, R., Ghisleni, R. et al. Deformation and failure mechanism of secondary cell wall in Spruce late wood. Appl. Phys. A 100, 447–452 (2010). https://doi.org/10.1007/s00339-010-5847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5847-1

Keywords