Skip to main content

Influences of Co doping on the structural and optical properties of ZnO nanostructured


Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV–VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient (α), energy band gap (E g ), the refractive index (n), and dielectric constants (σ) have been determined using different methods.

This is a preview of subscription content, access via your institution.


  1. 1.

    K.F. Cai, X.R. He, L.C. Zhang, Mater. Lett. 62, 1223 (2008)

    Article  Google Scholar 

  2. 2.

    C.L. Dong, C. Persson, L. Vayssieres, A. Augustsson, T. Schmitt, M. Mattesini, R. Ahuja, C.L. Chang, J.H. Guo, Phys. Rev. B 70, 195325 (2004)

    Article  ADS  Google Scholar 

  3. 3.

    M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 18979 (2001)

    Article  Google Scholar 

  4. 4.

    Y. Zhu, Y. Chen, X. Zhang, Q. Chen, Y. Shao, Mater. Lett. 63, 1242 (2009)

    Article  Google Scholar 

  5. 5.

    S. Major, A. Banerjee, K.L. Chopra, Thin Solid Films 108, 333 (1983)

    Article  ADS  Google Scholar 

  6. 6.

    T.L. Tansley, D.F. Neely, C.P. Foley, Thin Solid Films 117, 19 (1984)

    Article  ADS  Google Scholar 

  7. 7.

    U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  8. 8.

    A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B 61, 15019 (2000)

    Article  ADS  Google Scholar 

  9. 9.

    B. Kumar, H. Gong, S. Vicknesh, S.J. Chua, S. Tripathy, Appl. Phys. Lett. 89, 141901 (2006)

    Article  ADS  Google Scholar 

  10. 10.

    P. Misra, T.K. Sharma, S. Porwal, L.M. Kukreja, Appl. Phys. Lett. 89, 161912 (2006)

    Article  ADS  Google Scholar 

  11. 11.

    S. Rani, P. Puri, P.K. Shisodia, R.M. Mehra, Sol. Energy Mater. Sol. Cells 92(12), 1639 (2008)

    Article  Google Scholar 

  12. 12.

    D. Shuang, J.B. Wang, X.L. Zhong, H.L. Yan, Mater. Sci. Semicond. Process. 10, 97 (2007)

    Article  Google Scholar 

  13. 13.

    Y.-H. Ni, X.-W. Wei, J.-M. Hong, Y. Ye, Mater. Sci. Eng. B 121, 42 (2005)

    Article  Google Scholar 

  14. 14.

    S.-H. Hu, Y.-C. Chen, C.-C. Hwang, C.-H. Peng, D.-C. Gong, Y. Ye, J. Alloys Compd. 500, L17 (2010)

    Article  Google Scholar 

  15. 15.

    J. Zhao, Z.-G. Jin, X.-X. Liu, Z.-F. Liu, J. Eur. Ceram. Soc. 26, 3745 (2006)

    Article  Google Scholar 

  16. 16.

    J. Liu, X. Huang, Y. Li, Q. Zhong, L. Ren, Mater. Lett. 60, 1354 (2006)

    Article  Google Scholar 

  17. 17.

    T. Mahalingam, K.M. Lee, K.H. Park, S. Lee, Y. Ahn, J.-Y. Park, K.H. Koh, Nanotechnology 18, 035606 (2007)

    Article  ADS  Google Scholar 

  18. 18.

    Y. Sun, N.G. Ndifor-Angwafor, R.D. Jason, N.R.M. Ashfold, Chem. Phys. Lett. 431, 352 (2006)

    Article  ADS  Google Scholar 

  19. 19.

    R. Wu, Y. Yang, S. Cong, Z. Wu, C. Xie, H. Usui, K. Kawaguchi, N. Koshizaki, Chem. Phys. Lett. 406, 457 (2005)

    Article  ADS  Google Scholar 

  20. 20.

    E.J. Luna-Arredondo, A. Maldonado, R. Asomoza, D.R. Acosta, M.A. Melendez-Lira, M. de la L. Olvera, Thin Solid Films 490, 132 (2005)

    Article  ADS  Google Scholar 

  21. 21.

    S. Mridha, D. Basak, Mater. Res. Bull. 42, 875 (2007)

    Article  Google Scholar 

  22. 22.

    R. Swanepoel, J. Phys. E, Sci. Instrum. 16, 1214 (1983)

    Article  ADS  Google Scholar 

  23. 23.

    F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  24. 24.

    J. Tauc, Amorphous and Liquid Semiconductors (Plenum, New York, 1974)

    Google Scholar 

  25. 25.

    J. Tauc, The Optical Properties of Solids (North-Holland, Amsterdam, 1970)

    Google Scholar 

  26. 26.

    U.N. Maiti, P.K. Ghosh, S. Nandy, K.K. Chattopadhyay, Physica B 387, 103 (2007)

    Article  ADS  Google Scholar 

  27. 27.

    T. Ren, H.R. Baker, K.M. Poduska, Thin Solid Films 515, 7976 (2007)

    Article  ADS  Google Scholar 

  28. 28.

    M. Caglar, S. Ilican, Y. Caglar, Thin Solid Films 517, 5023 (2009)

    Article  Google Scholar 

  29. 29.

    R.T. Sanderson, Inorganic Chemistry (East-West Press PUT, New Delhi, 1971)

    Google Scholar 

  30. 30.

    N.A. Subrahamanyam, A Textbook of Optics (Brij Laboratory, Delhi, 1977)

    Google Scholar 

  31. 31.

    M.M. Wakkad, E.Kh. Shoker, S.H. Mohamed, J. Non-Cryst. Solids 265, 157 (2000)

    Article  ADS  Google Scholar 

  32. 32.

    S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    Article  ADS  Google Scholar 

  33. 33.

    K. Shimakawa, S. Narushima, S. Hosono, H. Kawazoe, Philos. Mag. Lett. 79, 755 (1999)

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to M. A. Majeed Khan or M. Wasi Khan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Majeed Khan, M.A., Wasi Khan, M., Alhoshan, M. et al. Influences of Co doping on the structural and optical properties of ZnO nanostructured. Appl. Phys. A 100, 45–51 (2010).

Download citation


  • Optical Conductivity
  • Hexagonal Wurtzite Structure
  • Urbach Tail
  • Localize Tail State
  • Electronics Dielectric Constant