Skip to main content

VUV 157 nm laser ablation of composite structures

Abstract

We report on the laser ablation of composite prismatic structures using a vacuum ultraviolet (VUV) 157 nm F2 laser. Polycarbonate and CR-39 substrates have been intentionally seeded with silver wires and silicon carbide whiskers respectively. The seed particles remain attached to the underlying substrate after laser ablation, forming composite silver-polycarbonate and silicon carbide-CR-39 interfaces. Strong optical absorption at 157 nm in the polymeric substrates allows precise control over the depth between the base of the substrate and composite interface. The surface roughness of the as-received seed particles has a significant effect on the final surface quality of the ablated structures. The textured surface on the silicon carbide whiskers is resolved on the walls of the ablated structures. This is in contrast to the composite structures formed using silver wires, which have a comparatively smoother surface.

This is a preview of subscription content, access via your institution.

References

  1. S. Zouhdi, A. Razek, Metamaterials. Eur. Phys. J., Appl. Phys. 46(3), 92 (2009)

    Article  Google Scholar 

  2. I.I. Smolyaninov, Plasmonic metamaterials and their applications, art. no. 70331I, in Plasmonics: Nanoimaging, Nanofabrication, and Their Applications IV, vol. 7033 (2008), p. 246

  3. A.V. Zayats, Plasmonic metamaterials: from modelling to applications, in 2008 International Conference on Mathematical Methods in Electromagnetic Theory (2008), pp. 114–116

  4. V.M. Shalaev, Optical negative-index metamaterials. Nat. Photonics 1(1), 41–48 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  5. S.A. Ramakrishna, Physics of negative refractive index materials. Rep. Prog. Phys. 68(2), 449–521 (2005)

    Article  ADS  Google Scholar 

  6. D. Torrent, J. Sanchez-Dehesa, Acoustic metamaterials for new two-dimensional sonic devices. New J. Phys. 9 (2007)

  7. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature 460(7259), 1110–1168 (2009)

    Article  ADS  Google Scholar 

  8. A.G. Kussow, A. Akyurtlu, N. Angkawisittpan, Optically isotropic negative index of refraction metamaterial. Phys. Status Solidi B, Basic Solid State Phys. 245(5), 992–997 (2008)

    Article  ADS  Google Scholar 

  9. Y.A. Urzhumov, D. Korobkin, B. Neuner III, C. Zorman, G. Shvets, Optical properties of sub-wavelength hole arrays in SiC membranes. J. Opt. A, Pure Appl. Opt. 9(9), S322–S333 (2007)

    Article  Google Scholar 

  10. D. Korobkin, Y.A. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I.D. Mayergoyz, G. Shvets, Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons. Appl. Phys. A, Mater. Sci. Process 88(4), 605–609 (2007)

    Article  ADS  Google Scholar 

  11. J.A. Schuller, T. Taubner, M.L. Brongersma, Optical antenna thermal emitters. Nat. Photonics 3(11), 659 (2009)

    Article  ADS  Google Scholar 

  12. S.M. Orbons, D. Freeman, B. Luther-Davies, B.C. Gibson, S.T. Huntington, Nanoscale annular array metamaterials, in 2006 International Conference on Nanoscience and Nanotechnology, vols. 1, 2 (2006), pp. 344–347

  13. C.E. Kriegler, M.S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, M. Wegener, Transition between corrugated metal films and split-ring-resonator arrays. Appl. Phys. B, Lasers Opt. 96(4), 749–755 (2009)

    Article  ADS  Google Scholar 

  14. Y.F. Chen, X.D. Wang, S. Banu, A.S. Schwanecke, H. Morgan, N.I. Zheludev, Nano metamaterials and photonic gratings by nanoimprint and hot embossing, in Proceedings of International Symposium on Biophotonics, Nanophotonics and Metamaterials (2006), pp. 420–425

  15. M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7(7), 543–546 (2008)

    Article  ADS  Google Scholar 

  16. M. Zamfirescu, R. Dabu, M. Dumitru, G. Sajin, F. Craciunoiu, Femtosecond laser fabrication of metamaterials for high frequency microwave devices. J. Laser Micro Nanoeng 3(1), 5–8 (2008)

    Article  Google Scholar 

  17. Z.B. Wang, W. Guo, B.S. Luk’yanchuk A. Pena, L. Li, Z. Liu, Laser ablation on nanoscales, art. no. 70050S, in High-Power Laser Ablation VII, Pts 1–2, vol. 7005 (2008), p. S50

  18. P.E. Dyer, C.D. Walton, R. Zakaria, Interference effects in 157 nm laser ablated cones in polycarbonate and application to spatial coherence measurement. Appl. Phys. A, Mater. Sci. Process 95(2), 319–323 (2009)

    Article  ADS  Google Scholar 

  19. W.W. Duley, UV Lasers: Effects and Applications in Materials Science (Cambridge University Press, New York, 1996), 407p

    Book  Google Scholar 

  20. D.R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 88th edn. editor-in-chief David R. Lide (CRC, Boca Raton, 2008)

    Google Scholar 

  21. S. Link, Z.L. Wang, M.A. El-Sayed, How does a gold nanorod melt? J. Phys. Chem. B 104(33), 7867–7870 (2000)

    Article  Google Scholar 

  22. H. Petrova, J.P. Juste, I. Pastoriza-Santos, G.V. Hartland, L.M. Liz-Marzán, P. Mulvaney, On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys. Chem. Chem. Phys. 8(7), 814–821 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Walton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cockcroft, S., Walton, C.D. & Zakaria, R. VUV 157 nm laser ablation of composite structures. Appl. Phys. A 101, 379–383 (2010). https://doi.org/10.1007/s00339-010-5831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5831-9

Keywords

  • Laser Ablation
  • Pulse Repetition Rate
  • Silver Wire
  • Prismatic Structure
  • Wire Structure