Skip to main content

Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition

Abstract

Indium was used as a catalyst for the synthesis of silicon nanowires in a plasma enhanced chemical vapor deposition reactor. In order to foster the catalytic activity of indium, the indium droplets had to be exposed to a hydrogen plasma prior to nanowire growth in a silane plasma. The structure of the nanowires was investigated as a function of the growth conditions by electron microscopy and Raman spectroscopy. The nanowires were found to crystallize along the <111>, <112> or <001> growth direction. When growing on the <112> and <111> directions, they revealed a similar crystal quality and the presence of a high density of twins along the {111} planes. The high density and periodicity of these twins lead to the formation of hexagonal domains inside the cubic structure. The corresponding Raman signature was found to be a peak at 495 cm−1, in agreement with previous studies. Finally, electron energy loss spectroscopy indicates an occasional migration of indium during growth.

This is a preview of subscription content, access via your institution.

References

  1. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  ADS  Google Scholar 

  2. M.T. Bjork, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, Appl. Phys. Lett. 80, 1058 (2002)

    Article  ADS  Google Scholar 

  3. S. Neusser, D. Grundler, Adv. Mater. 21, 2917 (2009)

    Article  Google Scholar 

  4. S. De Franceschi, J.A. van Dam, E.P.A.M. Bakkers, L.F. Feiner, L. Gurevich, L.P. Kouwenhoven, Appl. Phys. Lett. 83, 344 (2003)

    Article  ADS  Google Scholar 

  5. E.D. Minot, F. Kelkensberg, M. van Kouwen, J.A. van Dam, L.P. Kouwenhoven, V. Zwiller, M.T. Borgstrom, O. Wunnicke, M.A. Verheijen, E.P.A.M. Bakkers, Nano Lett. 7, 367 (2007)

    Article  ADS  Google Scholar 

  6. S. Thunich, L. Prechtel, D. Spirkoska, G. Abstreiter, A. Fontcuberta i Morral, A.W. Holleitner, Appl. Phys. Lett. 95, 083111 (2009)

    Article  ADS  Google Scholar 

  7. C. Colombo, M. Heiß, M. Graetzel, A. Fontcuberta i Morral, Appl. Phys. Lett. 94, 173108 (2009)

    Article  ADS  Google Scholar 

  8. W. Lu, J. Xiang, B.P. Timko, Y. Wu, C.M. Lieber, Proc. Natl. Acad. Sci. 102, 10046 (2005)

    Article  ADS  Google Scholar 

  9. J. Knoch, W. Riess, J. Appenzeller, IEEE Trans. Electron Devices 29, 372 (2008)

    Article  Google Scholar 

  10. X. Zhao, C.M. Wei, L. Yang, M.Y. Chou, Phys. Rev. Lett. 92, 236805 (2004)

    Article  ADS  Google Scholar 

  11. L. Cao, J.S. White, J.S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Nat. Mater. 8, 643 (2009)

    Article  ADS  Google Scholar 

  12. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  ADS  Google Scholar 

  13. E.I. Givarzigov, J. Cryst. Growth 31, 20 (1975)

    Article  ADS  Google Scholar 

  14. D.W. Kwak, H.Y. Cho, W.C. Yang, Physica E 37, 153 (2007)

    Article  ADS  Google Scholar 

  15. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Nano Lett. 4, 433 (2004)

    Article  ADS  Google Scholar 

  16. V. Schmidt, S. Senz, U. Gösele, Nano Lett. 5, 931 (2005)

    Article  ADS  Google Scholar 

  17. F.M. Ross, J. Tersoff, M.C. Reuter, Phys. Rev. Lett. 95, 146104 (2005)

    Article  ADS  Google Scholar 

  18. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Appl. Phys. Lett. 78, 2214 (2001)

    Article  ADS  Google Scholar 

  19. T. Kamins, Semiconductor nanowires for electronics and sensors, in WE-Heraeus Semin. Semiconducting Nanowires: Physics, Materials and Devices, vol. 397 (Wilhelm und Else Heraus-Stiftung, Bad Honnef, 2007)

    Google Scholar 

  20. T.I. Kamins, R.S. Williams, Y. Chen, Y.L. Chang, Y.A. Chang, Appl. Phys. Lett. 76, 562 (2000)

    Article  ADS  Google Scholar 

  21. V. Schmidt, J.V. Wittemann, S. Senz, U. Goesele, Adv. Mater. 21, 2681 (2009)

    Article  Google Scholar 

  22. J.L. Lensch-Falk, E.R. Hemesath, D.E. Perea, L.J. Lauhon, J. Mater. Chem. 19, 849 (2009)

    Article  Google Scholar 

  23. L. Yu, P.J. Alet, G. Picardi, I. Maurin, P.R.I. Cabarrocas, Nanotechnology 19, 485605 (2008)

    Article  Google Scholar 

  24. Y.W. Wang, V. Schmidt, S. Senz, U. Goesele, Nat. Nanotechnol. 1, 186 (2006)

    Article  ADS  Google Scholar 

  25. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta i Morral, Phys. Rev. B 77, 155326 (2008)

    Article  ADS  Google Scholar 

  26. I. Zardo, L. Yu, S. Conesa-Boj, S. Estrade, P.J. Alet, J. Simon, M. Frimmer, P. Roca i Cabarrocas, F. Peiro, J. Arbiol, J.R. Morante, A. Fontcuberta i Morral, Nanotechnology 20, 155602 (2009)

    Article  ADS  Google Scholar 

  27. Y. Xiang, L. Cao, S. Conesa-Boj, S. Estrade, J. Arbiol, F. Peiro, M. Heiß, I. Zardo, J.R. Morante, M.L. Brongersma, A. Fontcuberta i Morral, Nanotechnology 20, 245608 (2009)

    Article  ADS  Google Scholar 

  28. Y. Xiang, L. Cao, J. Arbiol, M.L. Brongersma, A. Fontcuberta i Morral, Appl. Phys. Lett. 94, 163101 (2009)

    Article  ADS  Google Scholar 

  29. F. Iacopi, P.M. Vereecken, M. Schaekers, M. Caymax, N. Moelans, B. Blanpain, O. Richard, C. Detavernier, H. Griffiths, Nanotechnology 18, 505307 (2007)

    Article  Google Scholar 

  30. V. Schmidt, J.V. Wittemann, U. Goesele, Chem. Rev 110, 361 (2010)

    Article  Google Scholar 

  31. D.E. Perea, J.L. Lensch, S.J. May, B.W. Wessels, L.J. Lauhon, Appl. Phys. A 85, 271 (2006)

    Article  ADS  Google Scholar 

  32. J.E. Allen, E.R. Memesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, Nat. Nanotechnol. 3, 168 (2008)

    Article  ADS  Google Scholar 

  33. S.H. Oh, K. van Benthem, S.I. Molina, A.Y. Borisevich, W. Luo, P. Werner, N.D. Zakharov, D. Kumar, S.T. Pantelides, S.J. Pennycook, Nano Lett 8, 1016 (2008)

    Article  ADS  Google Scholar 

  34. J. Arbiol, B. Kalache, P. Roca i Cabarrocas, J.R. Morante, A. Fontcuberta i Morral, Nanotechnology 18, 305606 (2007)

    Article  Google Scholar 

  35. J. Arbiol, A. Fontcuberta i Morral, S. Estrade, F. Peiro, B. Kalache, P. Roca i Cabarrocas, J.R. Morante, J. Appl. Phys. 104, 064312 (2008)

    Article  ADS  Google Scholar 

  36. M.C. Putnam, M.A. Filler, B.M. Kayes, M.D. Kelzenberg, Y. Guan, N.S. Lewis, J.M. Eiler, H.A. Atwater, Nano Lett. 8, 3109 (2008)

    Article  ADS  Google Scholar 

  37. A.R. Guichard, D.N. Barsic, S. Sharma, T.I. Kamins, M.L. Brongersma, Nano Lett. 6, 2140 (2006)

    Article  ADS  Google Scholar 

  38. O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, N. Magnea, Nano Lett. 9(7), 2575 (2009)

    Article  ADS  Google Scholar 

  39. E.A.G. Hamers, A. Fontcuberta i Morral, C. Niikura, R. Brenot, P. Roca i Cabarrocas, J. Appl. Phys. 88, 3674 (2000)

    Article  ADS  Google Scholar 

  40. S. Luidold, H. Antrekowitsch, JOM 59(6), 20 (2007)

    Article  Google Scholar 

  41. B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, N.S. Lewis, H.A. Atwater, Appl. Phys. Lett. 91, 103110 (2007)

    Article  ADS  Google Scholar 

  42. J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, Nature 440, 69 (2006)

    Article  ADS  Google Scholar 

  43. B. Kalache, P. Roca i Cabarrocas, A. Fontcuberta i Morral, Jpn. J. Appl. Phys. 45, 190 (2006)

    Article  ADS  Google Scholar 

  44. G.A. Bootsma, H.J. Gassen, J. Cryst. Growth 10, 223 (1971)

    Article  ADS  Google Scholar 

  45. J. Kikkawa, Y. Ohno, S. Takeda, Appl. Phys. Lett. 86, 123109 (2005)

    Article  ADS  Google Scholar 

  46. A.I. Hochbaum, R. Fan, R.R. He, P.D. Yang, Nano Lett. 5, 457 (2005)

    Article  ADS  Google Scholar 

  47. M.C. Putnam, M.A. Filler, B.M. Kayes, M.D. Kelzenberg, Y.B. Guan, N.S. Lewis, J.M. Eiler, H.A. Atwater, Nano Lett. 8, 3109 (2008)

    Article  ADS  Google Scholar 

  48. T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gosele, Adv. Mater. 19, 917 (2007)

    Article  Google Scholar 

  49. Z.P. Huang, X.X. Zhang, M. Reiche, L.F. Liu, W. Lee, T. Shimizu, S. Senz, U. Gosele, Nano Lett. 8, 3046 (2008)

    Article  ADS  Google Scholar 

  50. A.H. Carim, K.K. Lew, J.M. Redwing, Adv. Mater. 13, 1490 (2001)

    Article  Google Scholar 

  51. F.J. Lopez, E.R. Hemesath, L.J. Lauhon, Nano Lett. 9, 2774 (2009)

    Article  ADS  Google Scholar 

  52. S. Conesa-Boj, I. Zardo, S. Estrade, L. Wei, P.J. Alet, P. Roca i Cabarrocas, J.R. Morante, F. Peiro, A. Fontcuberta i Morral, J. Arbiol, Cryst. Growth Des. 10, 1534 (2010)

    Article  Google Scholar 

  53. C. Cayron, M. Den Hertog, L. Lattu-Romain, C. Mouchet, C. Secouard, J.L. Rouviere, J.P. Simonato, J. Appl. Crystallogr. 42, 242 (2009)

    Article  Google Scholar 

  54. J. Arbiol, S. Estradé, J.D. Prades, A. Cirera, F. Furtmayr, C. Stark, A. Laufer, M. Stutzmann, M. Eickhoff, M.H. Gass, A.L. Bleloch, F. Peiró, J.R. Morante, Nanotechnology 20, 145704 (2009)

    Article  ADS  Google Scholar 

  55. J. Arbiol, A. Fontcuberta i Morral, S. Estrade, F. Peiro, B. Kalache, P. Roca i Cabarrocas, J.R. Morante, J. Appl. Phys 104, 064312 (2008)

    Article  ADS  Google Scholar 

  56. I. Zardo, S. Conesa-Boj, F. Peiro, J.R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, A. Fontcuberta i Morral, Phys. Rev. B 80, 245324 (2009)

    Article  ADS  Google Scholar 

  57. A. Fontcuberta i Morral, J. Arbiol, J.D. Prades, A. Cirera, J.R. Morante, Adv. Mater 19, 1347 (2007)

    Article  Google Scholar 

  58. J.D. Prades, A. Cirera, J. Arbiol, J.R. Morante, A. Fontcuberta i Morral, Appl. Phys. Lett. 91, 123107 (2007)

    Article  ADS  Google Scholar 

  59. D.W. Feldman, J.H. Parker, W.J. Choyke, L. Patrick, Phys. Rev. 173, 787 (1968)

    Article  ADS  Google Scholar 

  60. T. Livneh, J.P. Zhang, G.S. Cheng, M. Moskovits, Phys. Rev. B 74, 035320 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fontcuberta i Morral.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zardo, I., Conesa-Boj, S., Estradé, S. et al. Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition. Appl. Phys. A 100, 287–296 (2010). https://doi.org/10.1007/s00339-010-5802-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5802-1

Keywords