Skip to main content

Advertisement

Log in

Fracture behaviour of plant epicuticular wax crystals and its role in preventing insect attachment: a theoretical approach

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

It is known that attachment ability of insects depends among others on the texture of the substrate. On plant surfaces, covered with microscopic epicuticular wax crystals, insect attachment was found to be highly reduced for many insect species. In some plants, this effect may be explained by the contamination of insect adhesive organs (pads) by wax crystals. In the present study, mechanics of the wax crystals fracture during contact formation between insect adhesive pads and plant surface is examined, in order to explain the observed contamination of pads by wax. It is shown that mechanisms of the wax crystal fracture may be rather different, depending on the slenderness ratio of the crystals. Crystals with high values of the ratio may buckle elastically or in an elastic-plastic way. For five plant species under consideration, the critical value of the slenderness ratio for elastic buckling is 26.5, while for elastic-plastic buckling it is 18.7. If the values of the slenderness ratio are lower than the critical values, one has to consider bending of the crystals under the weight of insects. Although this study considered only crystals of a tubular shape, the general approach is valid also for crystals of other shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gorb, Attachment Devices of Insect Cuticle (Kluwer Academic, Dordrecht, 2001)

    Google Scholar 

  2. R. Beutel, S.N. Gorb, J. Zool. Syst. Evol. Res. 39, 177 (2001)

    Article  Google Scholar 

  3. S.N. Gorb, R.G. Beutel, Naturwissenschaften 88, 530 (2001)

    Article  ADS  Google Scholar 

  4. C.E. Jeffree, in Biology of the Plant Cuticle, ed. by M. Riederer, C. Müller (Blackwell, Oxford, 2006), pp. 11–125

    Chapter  Google Scholar 

  5. R. Jetter, L. Kunst, L. Samuels, in Biology of the Plant Cuticle, ed. by M. Riederer, C. Müller (Blackwell, Oxford, 2006), pp. 148–181

    Google Scholar 

  6. G. Bianchi, in Waxes: Chemistry, Molecular Biology and Functions, ed. by R.J. Hamilton (The Oily Press, Bridgwater, 1995), pp. 177–222

    Google Scholar 

  7. W. Barthlott, N. Ehler, Trop. Subtrop. Pflanzenw. 19, 367 (1977)

    Google Scholar 

  8. W. Barthlott, C. Neinhuis, D. Cutler, F. Ditsch, I. Meusel, I. Theisen, H. Wilhelmi, Bot. J. Linn. Soc. 126, 237 (1998)

    Article  Google Scholar 

  9. W. Barthlott, E. Wollenweber, Trop. Subtrop. Pflanzenw. 32, 7 (1981)

    Google Scholar 

  10. W. Barthlott, in Scanning Electron Microscopy in Taxonomy and Functional Morphology, ed. by D. Claugher (Clarendon, Oxford, 1990), pp. 69–94

    Google Scholar 

  11. H. Bargel, K. Koch, Z. Cerman, C. Neinhuis, Funct. Plant Biol. 33, 893 (2006)

    Article  Google Scholar 

  12. E.V. Gorb, S.N. Gorb, in Scaling in Solid Mechanics, ed. by F.M. Borodich (Springer, Dordrecht 2009), pp. 243–252

    Chapter  Google Scholar 

  13. E. Gorb, S. Gorb, Entomol. Exp. Appl. 105, 13 (2002)

    Article  Google Scholar 

  14. E. Gorb, K. Haas, A. Henrich, S. Enders, N. Barbakadze, S. Gorb, J. Exp. Biol. 208, 4651 (2005)

    Article  Google Scholar 

  15. E.V. Gorb, S.N. Gorb, in Ecology and Biomechanics—A Mechanical Approach to the Ecology of Animals and Plants, ed. by A. Herrel, T. Speck, N.P. Rowe (CRC Press, Boca Raton, 2006), pp. 147–162

    Google Scholar 

  16. R.G. Craig, J.D. Eick, F.A. Peyton, J. Dent. Res. 46, 300 (1967)

    Google Scholar 

  17. M. Ito, T. Yamagishi, Y. Oshida, C.A. Munoz, J. Prosthet. Dent. 75, 211 (1996)

    Article  Google Scholar 

  18. E. Kotsiomiti, J.F. McCabe, J. Oral Rehabil. 23, 114 (1996)

    Article  Google Scholar 

  19. T.H. Shellhammer, T.R. Rumsey, J.M. Krochta, J. Food Eng. 33, 305 (1997)

    Article  Google Scholar 

  20. S.N. Gorb, Proc. R. Soc. Lond. B 265, 747 (1998)

    Article  Google Scholar 

  21. S.P. Timoshenko, J.M. Gere, Mechanics of Materials (Van Nostrand-Reinhold, New York, 1972)

    Google Scholar 

  22. S. Gorb, E. Gorb, V. Kastner, J. Exp. Biol. 204, 1421 (2001)

    Google Scholar 

  23. B. Oelschlaegel, S.N. Gorb, S. Wanke, C. Neinhuis, New Phytol. doi:10.1111/j.1469-8137.2009.03013.x (2009)

    Google Scholar 

  24. B. Rulik, S. Wanke, M. Nuss, C. Neinhuis, Flora 203, 175 (2008)

    Google Scholar 

  25. J. Schuppert, Vergleichende Strukturuntersuchungen und Kontaktbildung des Haftsystems bei Zweiflueglern (Diptera) (Saarbruecken, 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Gorb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodich, F.M., Gorb, E.V. & Gorb, S.N. Fracture behaviour of plant epicuticular wax crystals and its role in preventing insect attachment: a theoretical approach. Appl. Phys. A 100, 63–71 (2010). https://doi.org/10.1007/s00339-010-5794-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5794-x

Keywords

Navigation