Skip to main content
Log in

Ultra-fast disordering by fs-lasers: Lattice superheating prior to the entropy catastrophe

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Point defects and lattice heating are two major sources for the catastrophic disordering of a crystal in equilibrium. I demonstrate that the thermal point defects formation time in a femtosecond laser (fs-laser)-excited solid is the longest of all relaxation times, while the ultra-fast contribution to the entropy changes from electrons is minor in comparison to the catastrophe value. Thus non-thermal disordering solely by electron excitation prior to the energy transfer to the lattice is proved to be thermodynamically impossible. The swiftly excited solid can be disordered only if a lattice is superheated over the critical temperature defined by the entropy catastrophe. The presented analysis of experiments on fs excitation of different solids is consistent with theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Cahn, Nature 323, 668–669 (1986)

    Article  ADS  Google Scholar 

  2. H.J. Fecht, Nature 356, 133–135 (1992)

    Article  ADS  Google Scholar 

  3. H.J. Fecht, W.L. Johnson, Nature 334, 50–55 (1988)

    Article  ADS  Google Scholar 

  4. A. Rousse, G. Rischel, S. Fourneaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin, Nature 410, 65–68 (2001)

    Article  ADS  Google Scholar 

  5. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Foerster, M. Kammler, M. Horn von Hoegen, D. von der Linde, Nature 422, 287–289 (2003)

    Article  ADS  Google Scholar 

  6. G. Sciaini, M. Harb, S.G. Kruglik, T. Payer, C.T. Hebeisen, F.-J. Meyer zu Heringdorf, M. Yamaguchi, M. Horn von Hoegen, R. Ernstorfer, R.J. Dwayne Miller, Nature 458, 56–59 (2009)

    Article  ADS  Google Scholar 

  7. C.W. Siders, A. Cavalieri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K.R. Wilson, D. Von der Linde, C.P.J. Barty, Science 286, 1340–1342 (1999)

    Article  Google Scholar 

  8. A.M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, K.J. Gaffhey, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A.G. MacPhee, D. Wienstein, D.P. Lowney, T.K. Allison, T. Mattews, R. Falcone, A. Cavalieri, D. Fritz, S. Lee, P. Bucksbaum, D. Reis, J. Rudati, P. Fuoss, C. Kao, D. Siddons, R. Pahl, J. Als-Nielsen, S. Duesterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schheider, D. von der Linde, O. Hignette, F. Sette, H. Chapman, R. Lee, T. Hansen, S. Techert, J. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, J. Hastings, Science 308, 392–395 (2005)

    Article  ADS  Google Scholar 

  9. B. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, Science 302, 1382–1385 (2003)

    Article  ADS  Google Scholar 

  10. O.P. Uteza, E.G. Gamaly, A.V. Rode, M. Samoc, B. Luther-Davies, Phys. Rev. B 70, 054108 (2004)

    Article  ADS  Google Scholar 

  11. M. Kandyla, Shih, E. Mazur, Phys. Rev. B 75, 214107(7) (2007)

    ADS  Google Scholar 

  12. H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller, A. Laubereau, Nature 439, 183–186 (2006)

    Article  ADS  Google Scholar 

  13. D.M. Fritz, D.A. Reis, B. Adams, R.A. Akre, J. Arthur, C. Blome, P.H. Bucksbaum, A.L. Cavalieri, S. Engemann, S. Fahy, R.W. Falcone, P.H. Fuoss, K.J. Gaffney, M.J. George, J. Hajdu, M.P. Hertlein, P.B. Hillyard, M. Horn von Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S.H. Lee, A.M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, É.D. Murray, A.J. Nelson, M. Nicoul, R. Pahl, D. von der Linde, J.B. Hastings, Science 315, 633 (2007)

    Article  ADS  Google Scholar 

  14. D. Boschetto, E.G. Gamaly, A.V. Rode, B. Luther-Davies, D. Glijer, T. Garl, O. Albert, A. Rousse, J. Etchepare, Phys. Rev. Lett. 100, 027404 (2008)

    Article  ADS  Google Scholar 

  15. F. Lindemann, Phys. Z. 11, 609 (1910)

    Google Scholar 

  16. M. Born, J. Chem. Phys. 7, 591 (1939)

    Article  ADS  Google Scholar 

  17. T. Gorecki, Scr. Metall. 11, 1051 (1977)

    Article  Google Scholar 

  18. E.G. Gamaly, N.R. Madsen, M. Duering, A.V. Rode, V.Z. Kolev, B. Luther-Davies, Phys. Rev. B 71, 174405 (2005)

    Article  ADS  Google Scholar 

  19. E. Gamaly, Entropy catastrophe: stability limit for solids overheated by ultra-short laser assuring thermal mechanism of rapid melting, in EMRS 2008 Spring Meeting, Symposium B, Strasbourg, May 26–30, 2008

  20. E.G. Gamaly, A.V. Rode, Is the ultrafast melting of bismuth non-thermal? arXiv:0910.2150 (unpublished)

  21. V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene G. Gamaly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamaly, E.G. Ultra-fast disordering by fs-lasers: Lattice superheating prior to the entropy catastrophe. Appl. Phys. A 101, 205–208 (2010). https://doi.org/10.1007/s00339-010-5779-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5779-9

Keywords

Navigation