Skip to main content
Log in

Thermoelectric properties of n-type Sr x M y Co4Sb12 (M=Yb, Ba) double-filled skutterudites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Alkaline-earth (AE) and rare-earth (RE) atoms are usually used as void fillers in the caged compound CoSb3 to improve the thermoelectric performance of the filled system. Polycrystalline single-filled Sr0.21Co4Sb12, double-filled Sr x Yb y Co4Sb12, and Sr x Ba y Co4Sb12 skutterudites have been synthesized. Rietveld structure refinement confirms that both Sr and Yb occupy the Sb-icosaedron voids in skutterudite frame work. In this paper, we report the high-temperature thermoelectric properties including electrical conductivity, Seebeck coefficient, and thermal conductivity. Double filling of the Sr–Yb combinations shows a stronger suppression on lattice thermal conductivity than that of Sr–Ba combination. Furthermore, the double-filled Sr x Yb y Co4Sb12 skutterudites exhibit a much higher power factor than the Sr-filled system. The maximum power factor for Sr0.22Yb0.03Co4Sb12.12 reaches 41 μW cm−1 K−2 at room temperature and 57.5 μW cm−1 K−2 at 850 K, respectively. The enhanced thermoelectric figures of merit are 1.32 for Sr x Yb y Co4Sb12 and 1.22 for Sr x Ba y Co4Sb12 at 850 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Slack, in CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC, Boca Raton, 1995), p. 407

    Google Scholar 

  2. B.C. Sales, D. Mandrus, R.K. Williams, Science 272, 1352 (1996)

    Article  Google Scholar 

  3. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, C. Uher, J. Appl. Phys. 90, 1864 (2001)

    Article  ADS  Google Scholar 

  4. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006)

    Article  ADS  Google Scholar 

  5. M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, E. Műller, J. Appl. Phys. 95, 4852 (2004)

    Article  ADS  Google Scholar 

  6. G.S. Nolas, J.L. Cohn, G.A. Slack, Phys. Rev. B 58, 164 (1998)

    Article  ADS  Google Scholar 

  7. D.T. Morelli, G.P. Meisner, B.X. Chen, S.Q. Hu, C. Uher, Phys. Rev. B 56, 7376 (1997)

    Article  ADS  Google Scholar 

  8. G.S. Nolas, M. Kaeser, R.T. Littleton IV, T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000)

    Article  ADS  Google Scholar 

  9. G.A. Lamberton Jr., S. Bhattacharya, R.T. Littleton IV, M.A. Kaeser, R.H. Tedstrom, T.M. Tritt, J. Yang, G.S. Nolas, Appl. Phys. Lett. 80, 598 (2002)

    Article  ADS  Google Scholar 

  10. V.L. Kuznetsov, L.A. Kuznetsova, D.M. Rowe, J. Phys., Condens. Matter 15, 5035 (2003)

    Article  ADS  Google Scholar 

  11. Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, X.Y. Li, Appl. Phys. Lett. 89, 221107 (2006)

    Article  ADS  Google Scholar 

  12. Y.Z. Pei, J. Yang, L.D. Chen, W. Zhang, J.R. Salvador, J. Yang, Appl. Phys. Lett. 95, 042101 (2009)

    Article  ADS  Google Scholar 

  13. B.C. Sales, B.C. Chakoumakos, D. Mandrus, Phys. Rev. B 61, 2475 (2000)

    Article  ADS  Google Scholar 

  14. G.S. Nolas, H. Takizawa, E. Endo, H. Sellinschegg, D.C. Johnson, Appl. Phys. Lett. 77, 52 (2000)

    Article  ADS  Google Scholar 

  15. G.S. Nolas, J. Yang, H. Takizawa, Appl. Phys. Lett. 84, 5210 (2004)

    Article  ADS  Google Scholar 

  16. S.Q. Bai, X.Y. Zhao, Y.Z. Pei, L.D. Chen, W.Q. Zhang, in Proceedings of the 25th International Conference of Thermoelectrics, Vienna, Austria, 6–10 August 2006. doi:10.1109/ICT.2006.331301

  17. J. Yang, W. Zhang, S.Q. Bai, Z. Mei, L.D. Chen, Appl. Phys. Lett. 90, 192111 (2007), and references therein

    Article  ADS  Google Scholar 

  18. S.Q. Bai, Y.Z. Pei, L.D. Chen, W.Q. Zhang, X.Y. Zhao, J. Yang, Acta Mater. 57, 3135 (2009)

    Article  Google Scholar 

  19. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, W. Zhang, Appl. Phys. Lett. 92, 182101 (2008)

    Article  ADS  Google Scholar 

  20. F. Izumi, T. Ikeda, Mater. Sci. Forum 321–324, 198 (2000)

    Article  Google Scholar 

  21. X.F. Tang, H. Li, Q.J. Zhang, M. Niino, T. Goto, J. Appl. Phys. 100, 123702 (2006)

    Article  ADS  Google Scholar 

  22. W.Y. Zhao, C.L. Dong, P. Wei, W. Guan, L.S. Liu, P.C. Zhai, X.F. Tang, Q.J. Zhang, J. Appl. Phys. 102, 113708 (2007)

    Article  ADS  Google Scholar 

  23. J.S. Dyck, W. Chen, C. Uher, L.D. Chen, X.F. Tang, T. Hirai, J. Appl. Phys. 91, 3698 (2002), and references therein

    Article  ADS  Google Scholar 

  24. J. Yang, L. Xi, W. Zhang, L.D. Chen, J.H. Yang, J. Electron. Mater. (2009). doi:10.1007/s11664-009-07030-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, S.Q., Huang, X.Y., Chen, L.D. et al. Thermoelectric properties of n-type Sr x M y Co4Sb12 (M=Yb, Ba) double-filled skutterudites. Appl. Phys. A 100, 1109–1114 (2010). https://doi.org/10.1007/s00339-010-5711-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5711-3

Keywords

Navigation