Skip to main content
Log in

Performance improvement of rubrene-based organic light emitting devices with a mixed single layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have investigated the performance of organic light-emitting devices (OLEDs) with a rubrene-doped mixed single layer by using 4,4′-bis[N-(1-napthyl)-N-phenyl- amion] biphenyl (α-NPD) as hole transport layer. Comparing to a conventional heterostructure OLED, equal luminance vs. current density characteristics were obtained. In addition, maximum power efficiency was threefold improved, and the achieved value was 5.90 lm/W by optimizing a mixing ratio of hole and electron transport materials. By evaluating the temperature dependence of the J V characteristics for electron-injection dominated device, the electron injection from Al/LiF to mixed organic layer is attributed to Schottky thermal emission model. And the barrier height of the electron injection from Al/LiF into mixed single layer was obtained to be 0.62 eV, which is lower than Al/Alq3 interface. Meanwhile, the mixed single-layer device exhibited superior operational durability at a half-luminance of 2,250 h under a constant current operation mode. The reliability was improved with a factor of two compared to the heterostructure device due to the improvement of stability in mixed organic molecules and removal of the heterojunction interface in the mixed single-layer device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  Google Scholar 

  2. C.W. Tang, S.A. VanSlyke, C.H. Chen, J. Appl. Phys. 65, 3610 (1989)

    Article  ADS  Google Scholar 

  3. P. Fenter, F. Schreiber, V. Bulovic, S.R. Forrest, Chem. Phys. Lett. 277, 521 (1997)

    Article  ADS  Google Scholar 

  4. N. Tessler, Adv. Mater. 11, 363 (1999)

    Article  Google Scholar 

  5. S. Tokito, H. Tanaka, K. Noda, A. Okada, Y. Taga, Appl. Phys. Lett. 70, 1929 (1997)

    Article  ADS  Google Scholar 

  6. E. Han, L.M. Do, Y. Niidome, M. Fujihira, Thin Solid Films 273, 202 (1996)

    Article  ADS  Google Scholar 

  7. L.M. Do, E.M. Han, Y. Niidome, M. Fujihira, T. Kanno, S. Yoshida, A. Maeda, A.J. Ikushima, J. Appl. Phys. 76, 5118 (1994)

    Article  ADS  Google Scholar 

  8. X. Zhou, J. He, L.S. Liao, M. Lu, Z.H. Xiong, X.M. Ding, X.Y. Hou, F.G. Tao, C.E. Zhou, S.T. Lee, Appl. Phys. Lett. 74, 609 (1999)

    Article  ADS  Google Scholar 

  9. J.R. Gong, L.J. Wan, S.B. Lei, C.L. Bai, X.H. Zhang, S.T. Lee, J. Phys. Chem. B 109, 1675 (2005)

    Article  Google Scholar 

  10. H.J. Shin, M.C. Jung, J. Chung, K. Kim, J.C. Lee, S.P. Lee, Appl. Phys. Lett. 89, 63503 (2006)

    Article  Google Scholar 

  11. D.Y. Kondakov, W.C. Lenhart, W.F. Nichols, J. Appl. Phys. 101, 024512 (2007)

    Article  ADS  Google Scholar 

  12. T.Y. Chu, Y.H. Lee, O.K. Song, Appl. Phys. Lett. 91, 223509 (2007)

    Article  ADS  Google Scholar 

  13. D.Y. Kondakov, J. Appl. Phys. 104, 084520 (2008)

    Article  ADS  Google Scholar 

  14. V.V. Jarikov, D.Y. Kondakov, J. Appl. Phys. 105, 034905 (2009)

    Article  ADS  Google Scholar 

  15. D. Ma, I.A. Hümmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, F. Karasz, J. Appl. Phys. 87, 312 (2000)

    Article  ADS  Google Scholar 

  16. D. Ma, I.A. Hümmelgen, X. Jing, D. Wang, Z. Hong, L. Wang, X. Zhao, F. Wang, Braz. J. Phys. 30, 392 (2000)

    Google Scholar 

  17. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett. 55, 1489 (1989)

    Article  ADS  Google Scholar 

  18. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett. 57, 531 (1990)

    Article  ADS  Google Scholar 

  19. Z. Shen, P. Burrows, V. Bulović, S. Forrest, M. Thompson, Science 276, 2009 (1997)

    Article  Google Scholar 

  20. M.C. Vissenberg, M.J.M. Jong, Phys. Rev. B 57, 2667 (1998)

    Article  ADS  Google Scholar 

  21. S. Naka, K. Shinno, H. Okada, H. Onnagawa, K. Miyashita, Jpn. J. Appl. Phys. 33, L1772 (1994)

    Article  ADS  Google Scholar 

  22. A.B. Chwang, R.C. Kwong, J.J. Brown, Appl. Phys. Lett. 80, 725 (2002)

    Article  ADS  Google Scholar 

  23. Y. Shao, Y. Yang, Adv. Funct. Mater. 15, 1781 (2005)

    Article  Google Scholar 

  24. V.-E. Choong, S. Shi, J. Curless, C.-L. Shieh, H.-C. Lee, F. So, J. Shen, J. Yang, Appl. Phys. Lett. 75, 172 (1999)

    Article  ADS  Google Scholar 

  25. Z.K. Wang, H. Okada, S. Naka, Fifth Int. Conf. Mol. Electron. & Bioelectronics A-P23 (2009)

  26. T. Sano, Y. Hamada, K. Shibata, Inorganic and organic electroluminescence/EL 96 Berlin, p. 249 (1996)

  27. Y. Motono, S. Naka, H. Okada, H. Onnagawa, IDW/AD’05, p. 769 (2005)

  28. M. Uchida, C. Adachi, T. Koyama, Y. Taniguchi, J. Appl. Phys. 86, 1680 (2000)

    Article  ADS  Google Scholar 

  29. D. Ma, C.S. Lee, S.T. Lee, L.S. Hung, Appl. Phys. Lett. 80, 3641 (2002)

    Article  ADS  Google Scholar 

  30. H. Aziz, Z.D. Popovic, N.X. Hu, A.-M. Hor, G. Xu, Science 283, 1900 (1999)

    Article  ADS  Google Scholar 

  31. X. Zhou, J. He, L.S. Liao, M. Lu, X.M. Ding, X.Y. Hou, X.M. Zhang, X.Q. He, S.T. Lee, Adv. Mater. 12, 265 (2000)

    Article  Google Scholar 

  32. Y. Hamada, H. Sano, T. Tsujioka, H. Takahashi, T. Usuki, Appl. Phys. Lett. 75, 1682 (1999)

    Article  ADS  Google Scholar 

  33. H. Murata, C.D. Merritt, Z.H. Kafafi, IEEE J. Sel. Top. Quantum Electron. 4, 119 (1998)

    Article  Google Scholar 

  34. H. Kanno, Y. Hamada, H. Takahashi, IEEE J. Sel. Top. Quantum Electron. 10, 30 (2004)

    Article  Google Scholar 

  35. M. Matsumura, Y. Jinde, Appl. Phys. Lett. 73, 2872 (1998)

    Article  ADS  Google Scholar 

  36. S. Naka, M. Tamekawa, T. Terashita, H. Okada, H. Anada, H. Onnagawa, Synth. Met. 91, 129 (1997)

    Article  Google Scholar 

  37. I.D. Parker, J. Appl. Phys. 78, 1656 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaokui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Naka, S. & Okada, H. Performance improvement of rubrene-based organic light emitting devices with a mixed single layer. Appl. Phys. A 100, 1103–1108 (2010). https://doi.org/10.1007/s00339-010-5710-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5710-4

Keywords

Navigation