Skip to main content

Advertisement

Log in

Phase transformation of Ni/Si thin films induced by nanoindentation and annealing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin Ni/Si films are prepared by depositing a Ni layer with a thickness of 100 nm on a Si (100) substrate. The as-deposited thin-film specimens are indented to a maximum depth of 500 nm using a nanoindentation technique and are then annealed at temperatures of 200°C, 300°C, 500°C and 800°C for 2 min. The microstructural changes and phases induced in the various specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). Based on the load-displacement data obtained in the nanoindentation tests, the hardness and Young’s modulus of the as-deposited specimens are found to be 13 GPa and 177 GPa, respectively. The microstructural observations reveal that the nanoindentation process prompts the transformation of the indentation-affected zone of the silicon substrate from a diamond cubic structure to a mixed structure comprising amorphous phase and metastable Si III and Si XII phases. Following annealing at temperatures of 200∼500°C, the indented zone contains either a mixture of amorphous phase and Si III and Si XII phases, or Si III and Si XII phases only, depending on the annealing temperature. In addition, the annealing process prompts the formation of nickel silicide phases at the Ni/Si interface or within the indentation zone. The composition of these phases depends on the annealing temperature. Specifically, Ni2Si is formed at a temperature of 200°C, NiSi is formed at a temperature of 300°C and 500°C, and NiSi2 is formed at 800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Seo, J.H. Lee, J.R. Lee, Y.H. Bae, Int. J. Mod. Phys. B 17, 2001 (2003)

    Article  ADS  Google Scholar 

  2. A. Inberg, Y. Shacham-Diamand, E. Rabinovich, G. Golanb, N. Croitoru, Thin Solid Films 389, 213 (2001)

    Article  ADS  Google Scholar 

  3. D.M. Cao, T. Wang, B. Feng, W.J. Meng, K.W. Kelly, Thin Solid Films 398, 553 (2001)

    Article  ADS  Google Scholar 

  4. F. Abdelmalek, Thin Solid Films 389, 296 (2001)

    Article  ADS  Google Scholar 

  5. G. Patriarche, E. Le Bourhis, Appl. Surf. Sci. 178, 134 (2001)

    Article  ADS  Google Scholar 

  6. H.S. Nalwa, Handbook of Nanostructured Materials and Technology (Elsevier, Amsterdam, 1999)

    Google Scholar 

  7. M. Gadelkak, The MEMS Handbook (CRC Press, New York, 2002)

    Google Scholar 

  8. R. Saha, W.D. Nix, Acta Mater. 50, 23 (2002)

    Article  Google Scholar 

  9. Y. Cao, S. Allanmeh, D. Nankivil, S. Sethiaraj, T. Otiti, W. Soboyejo, Mater. Sci. Eng. A 427, 232 (2006)

    Article  Google Scholar 

  10. G.M. Pharr, Mater. Sci. Eng. A 253, 151 (1998)

    Article  Google Scholar 

  11. J. Yang, H. Takahashi, X. Gai, H. Harada, J. Tamaki, T. Kuriyagawa, Mater. Sci. Eng. A 423, 19 (2006)

    Article  Google Scholar 

  12. W.S. Lee, F.J. Fong, Mater. Trans. 48, 2650 (2007)

    Article  Google Scholar 

  13. W.S. Lee, T.Y. Liu, Nanotechnology 18, 335701 (2007)

    Article  ADS  Google Scholar 

  14. P.S. Lee, K.L. Pey, D. Mangelinck, J. Ding, D.Z. Chi, J.Y. Dai, L. Chan, J. Electrochem. Soc. 149, G331 (2002)

    Article  Google Scholar 

  15. F.F. Zhao, J.Z. Zheng, Z.X. Shen, T. Osipowicz, W.Z. Gao, L.H. Chan, Microelectron. Eng. 71, 104 (2004)

    Article  Google Scholar 

  16. B.A. Julies, D. Knoesen, R. Pretorius, D. Adams, Thin Solid Films 347, 201 (1999)

    Article  ADS  Google Scholar 

  17. J. Foggiato, W.S. Yoo, M. Ouaknine, T. Murakami, T. Fukada, Mater. Sci. Eng. B 114–115, 56 (2004)

    Article  Google Scholar 

  18. Y.J. Chang, J.L. Erskine, Phys. Rev. B 28, 5766 (1983)

    Article  ADS  Google Scholar 

  19. J.E.E. Baglin, H.A. Atwater, D. Gupta, F.M. d’Heurle, Thin Solid Films 93, 255 (1982)

    Article  ADS  Google Scholar 

  20. M.A. Pawlak, J.A. Kittl, O. Chamirian, A. Veloso, A. Lauwers, T. Schram, K. Maex, A. Vantomme, Microelectron. Eng. 76, 349 (2004)

    Article  Google Scholar 

  21. H. Iwai, T. Ohguro, S.I. Ohmi, Microelectron. Eng. 60, 157 (2002)

    Article  Google Scholar 

  22. F.F. Zhao, J.Z. Zheng, Z.X. Shen, T. Osipowicz, W.Z. Gao, L.H. Chan, Microelectron. Eng. 71, 104 (2004)

    Article  Google Scholar 

  23. J.W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  ADS  Google Scholar 

  24. V. Domnich, Y. Gogotsi, S. Dub, Appl. Phys. Lett. 76, 2214 (2000)

    Article  ADS  Google Scholar 

  25. G.M. Pharr, W.C. Oliver, D.S. Harding, J. Mater. Res. 6, 1129 (1991)

    Article  ADS  Google Scholar 

  26. X.J. Zheng, Y.C. Zhou, J.Y. Li, Acta Mater. 51, 3985 (2003)

    Article  Google Scholar 

  27. A.J. Leistner, A.C. Fischer-Cripps, J.M. Bennett, in Proc. International Society of Optical Engineering (SPIE), ed. by W.A. Goodman (Bellingham, 2003), pp. 215–222

  28. R. Rao, J.E. Bradby, S. Ruffell, J.S. Williams, Microelectron. J. 38, 722 (2007)

    Article  Google Scholar 

  29. A. Kailer, Y.G. Gogotsi, K.G. Nickel, J. Appl. Phys. 81, 3057 (1997)

    Article  ADS  Google Scholar 

  30. R. Saha, Z. Xue, Y. Huang, W.D. Nix, J. Mech. Phys. Solids 49, 1997 (2001)

    Article  MATH  ADS  Google Scholar 

  31. A.J. Leistner, A.C. Fischer-Cripps, J.M. Bennett, in Proc. International Society of Optical Engineering (SPIE), ed. by W.A. Goodman (Bellingham, 2003), pp. 215–222

  32. H. Gao, C.H. Chiu, J. Lee, Int. J. Solid Struct. 29, 2471 (1992)

    Article  Google Scholar 

  33. M. Wittling, A. Bendavid, P.J. Martin, M.V. Swain, Thin Solid Films 270, 283 (1995)

    Article  ADS  Google Scholar 

  34. A. Kailer, K.G. Nickel, Y.G. Gogotsi, J. Raman Spectrosc. 30, 939 (1999)

    Article  ADS  Google Scholar 

  35. P.S. Lee, D. Mangelinck, K.L. Pey, Z.X. Shen, J. Ding, T. Osipowicz, A.K. See, Electrochem. Solid-State Lett. 3, 153 (2000)

    Article  Google Scholar 

  36. Y.L. Jiang, A. Agarwal, G.P. Ru, G. Cai, B.Z. Li, Nucl. Instrum. Methods B 237, 160 (2005)

    Article  ADS  Google Scholar 

  37. P.S. Lee, K.L. Pey, D. Mangelinck, J. Ding, D.Z. Chi, J.Y. Dai, L. Chan, J. Electrochem. Soc. 149, G331 (2002)

    Article  Google Scholar 

  38. S. Nygren, D. Caffin, M. Ostling, F.M. d’Henrle, Appl. Surf. Sci. 53, 87 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woei-Shyan Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WS., Chen, TH., Lin, CF. et al. Phase transformation of Ni/Si thin films induced by nanoindentation and annealing. Appl. Phys. A 100, 1089–1096 (2010). https://doi.org/10.1007/s00339-010-5706-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5706-0

Keywords

Navigation