Skip to main content
Log in

Influence of post-grown Li-rich and Li-poor vapor transport equilibration on composition, OH absorption and optical-damage threshold of Mg (5 mol%) : LiNbO3 crystals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Li-rich (Li-poor) vapor transport equilibration (VTE) treatments on a number of Z-cut 0.47 mm thick congruent MgO (5 mol% in melt) : LiNbO3 crystals were carried out at 1100°C over different durations ranging in 1–172 (40–395) h. Neutron activation analysis shows that neither Li-rich nor Li-poor VTE-induced Mg and Nb loss from the crystal occurred. The Li2O content in the crystal was measured as a function of VTE duration by the gravimetric method. The Li-rich/Li-poor VTE effects on OH absorption were studied in comparison with the as-grown crystal. The study shows that the Li-rich VTE results in OH absorption band annihilation. After further oxidation treatment the band reemerges and peaks at the same wavenumber as that of the as-grown crystal (∼3535.6 cm−1), showing that the MgO concentration in the Li-rich VTE crystal is still above the optical-damage threshold. The Li-poor VTE causes OH band shift to 3486.3–3491.6 cm−1, indicating that the MgO concentration in all Li-poor VTE crystals is all below the optical-damage threshold. Further successive Li-rich VTE and oxidation treatments on the Li-poor VTE-treated crystal lead the band to shift back to 3535.6 cm−1, showing that the post Li-rich VTE brought the Li-poor VTE-treated crystal above the optical-damage threshold again. It is found that the peaking position, band width, peaking absorption and band area of the absorption at ∼3486 cm−1 all increase monotonously with the decrease of the Li2O content arising from prolonged Li-poor VTE, and quantitative relationships to the Li2O content are established for the latter two parameters. The VTE effects on the OH absorption are conducted with the VTE-induced OH content alteration and charge redistribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kuroda, S. Kurimura, Y. Uesu, Appl. Phys. Lett. 69, 1565 (1996)

    Article  ADS  Google Scholar 

  2. D.A. Bryan, R. Gerson, H.E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984)

    Article  ADS  Google Scholar 

  3. A. Cordova-Plaza, T.Y. Fan, M.J.F. Digonnet, R.L. Byer, H.J. Shaw, Opt. Lett. 13, 209 (1988)

    Article  ADS  Google Scholar 

  4. E. Lallier, J.P. Pocholle, M. Papuchon, M.P. De Micheli, M.J. Li, Q. He, D.B. Ostrowsky, C. Grezes-Besset, E. Pelletier, IEEE J. Quantum Electron. 27, 618 (1991)

    Article  ADS  Google Scholar 

  5. R. Brinkmann, W. Sohler, H. Suche, C. Wersig, IEEE J. Quantum Electron. 28, 466 (1992)

    Article  ADS  Google Scholar 

  6. M. Haruna, H. Sewai, H. Nishihara, S. Ikunishi, T. Gozen, H. Tanaka, Electron. Lett. 30, 412 (1994)

    Article  Google Scholar 

  7. T. Fujiwara, M. Takahashi, M. Ohama, A.J. Ikushima, Y. Furukawa, K. Kitamura, Electron. Lett. 35, 499 (1999)

    Article  Google Scholar 

  8. V. Gopalan, T.E. Mitchell, Y. Furukawa, K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998)

    Article  ADS  Google Scholar 

  9. A. Grisard, E. Lallier, K. Polgar, A. Peter, Electron. Lett. 36, 1043 (2000)

    Article  Google Scholar 

  10. M. Katz, R. Route, A. Alexandrovski, M.M. Fejer, M.C.C. Custodio, D.H. Jundt, OSA Trends Opt. Photonics Ser. 88, 1778 (2003)

    Google Scholar 

  11. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, N. Suda, Appl. Phys. Lett. 77, 2494 (2000)

    Article  ADS  Google Scholar 

  12. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, Y. Yajima, N. Iyi, I. Mnushkina, P. Guggenheim, J.M. Martin, J. Cryst. Growth 211, 230 (2000)

    Article  ADS  Google Scholar 

  13. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, K. Kitamura, Jpn. J. Appl. Phys. Part 2 41, L49 (2002)

    Article  Google Scholar 

  14. W.M. Young, R.S. Feigelson, D.H. Jundt, M.M. Fejer, J. Appl. Phys. 69, 7372 (1991)

    Article  ADS  Google Scholar 

  15. Á. Péter, K. Polgár, L. Kovács, K. Lengyel, J. Cryst. Growth 284, 149 (2005)

    Article  ADS  Google Scholar 

  16. C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, D. Sciancalepore, IEEE J. Sel. Top. Quantum Electron. 6, 101 (2000)

    Article  Google Scholar 

  17. I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.H. Müller, T. Gog, G. Materlik, O. Witte, H. Stolz, W. von der Osten, Appl. Phys. A, Mater. Sci. Process. 64, 33 (1997)

    ADS  Google Scholar 

  18. D.L. Zhang, P.R. Hua, E.Y.B. Pun, J. Appl. Phys. 103, 113513 (2007)

    Article  ADS  Google Scholar 

  19. R.G. Smith, D.B. Fraser, R.T. Denton, T.C. Rich, J. Appl. Phys. 39, 4600 (1968)

    Article  ADS  Google Scholar 

  20. M. Wöhlecke, L. Kovács, Crit. Rev. Solid State Mater. Sci. 26, 1 (2001)

    Article  ADS  Google Scholar 

  21. G. Dravecz, L. Kovács, Appl. Phys. B, Lasers Opt. 88, 305 (2007)

    Article  ADS  Google Scholar 

  22. G. Dravecz, L. Kovács, Á. Péter, K. Polgár, P. Bourson, Phys. Status Solidi C 4, 1313 (2007)

    Article  ADS  Google Scholar 

  23. Á. Polgár, Á. Péter, L. Kovács, G. Corradi, Z. Szaller, J. Cryst. Growth 177, 211 (1997)

    Article  ADS  Google Scholar 

  24. L. Kovács, M. Wohlecke, A. Jovanović, K. Polgár, S. Kapphan, J. Phys. Chem. Solids 52, 797 (1991)

    Article  ADS  Google Scholar 

  25. A. Gröne, S. Kapphan, J. Phys. Chem. Solids 56, 687 (1995)

    Article  ADS  Google Scholar 

  26. L. Kovács, V. Szalay, R. Capelletti, Solid State Commun. 52, 1029 (1984)

    Article  ADS  Google Scholar 

  27. M. Engelsberg, R.E. Souza, L.H. Pacobahyba, G.C. do Nascimento, Appl. Phys. Lett. 67, 359 (1995)

    Article  ADS  Google Scholar 

  28. O.F. Schirmer, O. Thiemann, M. Wöhlecke, J. Phys. Chem. Solids 52, 185 (1991)

    Article  ADS  Google Scholar 

  29. A. Alcázar deV, J. Rams, J.M. Cabrera, F. Agulló-López, J. Appl. Phys. 82, 4752 (1997)

    Article  ADS  Google Scholar 

  30. Y. Kong, W. Zhang, X. Chen, J. Xu, G. Zhang, J. Phys., Condens. Matter 11, 2139 (1999)

    Article  ADS  Google Scholar 

  31. Á. Péter, K. Polgár, L. Kovács, K. Lengyel, J. Cryst. Growth 284, 149 (2005)

    Article  ADS  Google Scholar 

  32. K. Lengyel, Á. Péter, K. Polgár, L. Kovács, G. Corradi, Phys. Status Solidi C 2, 171 (2005)

    Article  ADS  Google Scholar 

  33. K. Polgár, L. Kovács, I. Foldvari, I. Cravero, Solid State Commun. 59, 375 (1986)

    Article  ADS  Google Scholar 

  34. U. Heinemeyer, M.C. Wengler, K. Buse, Appl. Phys. Lett. 89, 112910 (2006)

    Article  ADS  Google Scholar 

  35. P.C. Tsai, H.F. Lu, P.J. Chang, C.T. Chia, H.L. Liu, S.H. Lin, M.L. Hu, Jpn. J. Appl. Phys., Part 1 46, 7159 (2007)

    Article  Google Scholar 

  36. M. Cochez, M. Ferriol, P. Bourson, M. Aillerie, Opt. Mater. 21, 775 (2003)

    Article  ADS  Google Scholar 

  37. H. Wang, J.K. Wen, B. Li, H.F. Wang, Phys. Status Solidi A 118, K47 (1990)

    Article  ADS  Google Scholar 

  38. J.J. Liu, W.L. Zhang, G.Y. Zhang, Solid State Commun. 98, 523 (1996)

    Article  ADS  Google Scholar 

  39. J.J. Liu, W.L. Zhang, G.Y. Zhang, Phys. Lett. A 212, 275 (1996)

    Article  ADS  Google Scholar 

  40. L. Kovacs, L. Rebouta, J.C. Soares, M.F. da Silva, Radiat. Eff. Defects Solids 119–121, 445 (1991)

    Article  Google Scholar 

  41. X.Q. Feng, T.B. Tang, J. Phys., Condens. Matter 5, 2423 (1993)

    Article  ADS  Google Scholar 

  42. L. Kovacs, L. Rebouta, J.C. Soares, M.F. da Silva, M. Hage-Ali, J.P. Stoquert, P. Siffert, J.A. Sanz-Garcia, G. Corradi, Z. Szaller, K. Polgar, J. Phys., Condens. Matter 5, 781 (1993)

    Article  ADS  Google Scholar 

  43. M. Wöhlecke, G. Corradi, K. Betzler, Appl. Phys. B, Lasers Opt. 63, 323 (1996)

    ADS  Google Scholar 

  44. P.F. Bordui, R.G. Norwood, D.H. Jundt, M.M. Fejer, J. Appl. Phys. 71, 875 (1992)

    Article  ADS  Google Scholar 

  45. N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, J. Solid State Chem. 118, 148 (1995)

    Article  ADS  Google Scholar 

  46. D.L. Zhang, D. C Wang, E.Y.B. Pun, J. Appl. Phys. 97, 103524 (2005)

    Article  ADS  Google Scholar 

  47. Y.F. Kong, J.K. Wen, H.F. Wang, Appl. Phys. Lett. 66, 280 (1995)

    Article  ADS  Google Scholar 

  48. L. Sun, C.H. Yang, A.H. Li, Y.H. Xu, L.C. Zhao, J. Appl. Phys. 105, 043512 (2009)

    Article  ADS  Google Scholar 

  49. L. Sun, F.Y. Guo, Q. Lv, L.L. Liu, H.T. Li, W. Cai, L.C. Zhao, Y.H. Xu, Optik 120, 514 (2009)

    Google Scholar 

  50. J.K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato, Appl. Phys. Lett. 61, 2156 (1992)

    Article  ADS  Google Scholar 

  51. M. Nakamura, S. Takekawa, Y.W. Liu, K. Kitamura, J. Cryst. Growth 281, 549 (2005)

    Article  ADS  Google Scholar 

  52. A. Loni, G. Hay, R.M. De La Rue, J.M. Winfield, J. Lightwave Technol. 7, 911 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Long Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, DL., Wang, Z., Hua, PR. et al. Influence of post-grown Li-rich and Li-poor vapor transport equilibration on composition, OH absorption and optical-damage threshold of Mg (5 mol%) : LiNbO3 crystals. Appl. Phys. A 100, 1073–1081 (2010). https://doi.org/10.1007/s00339-010-5704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5704-2

Keywords

Navigation