Skip to main content
Log in

Nature of room-temperature ferromagnetism from undoped ZnO nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO nanoparticles were synthesized by a sol–gel calcination process following being annealed in air at 400, 600, 800 and 1000°C. X-ray diffraction pattern and X-ray photoelectron spectroscopy show that all the samples present a typical wurtzite structure and no other impurity phases are observed. Room-temperature ferromagnetism from all the samples is confirmed by the vibrating sample magnetometer measurements, which shows that the RTFM decreases with the annealing temperature increasing from 400 to 800°C, and then became larger for the sample annealed at 1000°C. According to the Raman scattering spectra and electron paramagnetic resonance, the RTFM of samples annealed at 600, 800 and 1000°C might be related to the oxygen vacancy related defects. However, the RTFM from the sample annealed at 400°C, presenting nearly the same value as that of the sample annealed at 1000°C, could originate with the interstitial zinc defects associated with XPS and photoluminescence analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  2. K. Sato, H.K. Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000)

    Article  ADS  Google Scholar 

  3. H.L. Shi, Y.F. Duan, Nanoscale Res. Lett. 4, 480 (2009)

    Article  ADS  Google Scholar 

  4. J.H. Shim, T. Hwang, S. Lee, J.H. Park, S.J. Han, Y.H. Jeong, Appl. Phys. Lett. 86, 082503 (2005)

    Article  ADS  Google Scholar 

  5. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  6. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004)

    Article  ADS  Google Scholar 

  7. M. Venkatesan, C.B. Fitzgerald, J.M.D. Coey, Nature 430, 630 (2004)

    Article  ADS  Google Scholar 

  8. J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneles, Phys. Rev. B 72, 24450 (2005)

    Article  ADS  Google Scholar 

  9. N.H. Hong, J. Sakai, N. Poirot, V. Brizé, Phys. Rev. B 73, 132404 (2006)

    Article  ADS  Google Scholar 

  10. S.D. Yoon, Y. Chen, A. Yang, T.L. Goodrich, X. Zuo, D.A. Arena, K. Ziemer, C. Vittoria, V.G. Harris, J. Phys., Condens. Matter 18, L355 (2006)

    Article  ADS  Google Scholar 

  11. N.H. Hong, J. Sakai, V. Brizé, J. Phys., Condens. Matter 19, 036219 (2007)

    Article  ADS  Google Scholar 

  12. J.M.D. Coey, Solid State Sci. 7, 660 (2005)

    Article  ADS  Google Scholar 

  13. C.A. Arguello, D.L. Rousseau, S.P.S. Porto, Phys. Rev. 181, 1351 (1969)

    Article  ADS  Google Scholar 

  14. X. Wang, Q. Li, Z. Liu, J. Zhang, Z. Liu, R. Wang, Appl. Phys. Lett. 84, 4941 (2004)

    Article  ADS  Google Scholar 

  15. J.J. Wu, S.C. Liu, J. Phys. Chem. B 106, 9546 (2002)

    Article  Google Scholar 

  16. Q. Shi, L.J. Rendek Jr., W.B. Cai, D.A. Scherson, Electrochem. Solid-State Lett. 6, E35 (2003)

    Article  Google Scholar 

  17. J. Xu, W. Ji, X.B. Wang, H. Shu, Z.X. Shen, S.H. Tang, J. Raman Spectrosc. 29, 613 (1998)

    Article  ADS  Google Scholar 

  18. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003)

    Article  ADS  Google Scholar 

  19. J.H. Yang, M. Gao, Y.J. Zhang, L.L. Yang, J.H. Lang, D.D. Wang, H.L. Liu, Y.Q. Liu, Y.X. Wang, H.G. Fan, Superlattices Microstruct. 44, 137 (2008)

    Article  ADS  Google Scholar 

  20. H.S. Kang, J.S. Kang, S.S. Pang, E.S. Shim, S.Y. Lee, Mater. Sci. Eng. B 102, 313 (2003)

    Article  Google Scholar 

  21. L.V. Azaroff, Introduction to Solids (McGraw-Hill, New York, 1960)

    Google Scholar 

  22. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972)

    Google Scholar 

  23. A.K. Rumaiz, B. Ali, A. Ceylan, M. Boggs, T. Beebe, S.I. Shah, Solid State Commun. 144, 334 (2007)

    Article  ADS  Google Scholar 

  24. N.H. Hong, J. Sakai, F. Gervais, J. Magn. Magn. Mater. 316, 214 (2007)

    Article  ADS  Google Scholar 

  25. P.H. Kasai, Phys. Rev. 130, 989 (1963)

    Article  ADS  Google Scholar 

  26. J. Schneider, A. Rauber, Z. Naturforsch. A 16, 712 (1961)

    ADS  Google Scholar 

  27. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)

    Article  ADS  Google Scholar 

  28. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  29. Z.J. Yan, Y.W. Ma, D.L. Wang, J.H. Wang, Z.S. Gao, L. Wang, P. Yu, T. Song, Appl. Phys. Lett. 92, 081911 (2008)

    Article  ADS  Google Scholar 

  30. M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, Thin Solid Films 280, 20 (1996)

    Article  ADS  Google Scholar 

  31. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in Handbook of X-Ray Photoelectron Spectroscopy, ed. by J. Chastain, R.C. Kings Jr. (Phys. Electron. Inc., Eden Prarie, 1995)

    Google Scholar 

  32. M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, Mater. Lett. 48, 194 (2001)

    Article  Google Scholar 

  33. M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, J. Cryst. Growth 220, 254 (2000)

    Article  ADS  Google Scholar 

  34. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)

    Article  ADS  Google Scholar 

  35. Y.T. Zhang, G.T. Du, X.Q. Wang, W.C. Li, X.T. Yang, Y. Ma, B.J. Zhao, H.J. Yang, D.L. Liu, S.R. Yang, J. Cryst. Growth 252, 180 (2003)

    Article  ADS  Google Scholar 

  36. Y.Z. Zhang, L.H. Wu, H. Li, J.H. Xu, L.Z. Han, B.C. Wang, Z.L. Tuo, E.Q. Xie, J. Alloys Compd. 473, 319 (2009)

    Article  Google Scholar 

  37. Z.B. Fang, Y.Y. Wang, D.Y. Xu, Y.S. Tan, X.Q. Liu, Opt. Mater. 26, 239 (2004)

    Article  ADS  Google Scholar 

  38. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J. Caruso, M.J.H. Smith, T.T. Kodas, J. Lumin. 75, 11 (1997)

    Article  Google Scholar 

  39. F.H. Leiter, H.R. Alves, A. Hofstaetter, D.M. Hofmann, B.K. Meyer, Phys. Status Solidi B 226, R4 (2001)

    Article  ADS  Google Scholar 

  40. H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95, 1246 (2004)

    Article  ADS  Google Scholar 

  41. G.Z. Xing, B. Yao, C.X. Cong, T. Yang, Y.P. Xie, B.H. Li, D.Z. Shen, J. Alloys Compd. 457, 36 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhe Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Xie, E. Nature of room-temperature ferromagnetism from undoped ZnO nanoparticles. Appl. Phys. A 99, 955–960 (2010). https://doi.org/10.1007/s00339-010-5703-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5703-3

Keywords

Navigation