Skip to main content
Log in

Electrowetting on ZnO nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we study the electrowetting character on ZnO nanowires. We grow the ZnO nanowires on indium tin oxide (ITO) by a hydrothermal method, and the ZnO nanowires surface is further hydrophobized by spin-coating Teflon. Such a prepared surface shows superhydrophobic properties with an initial contact angle 165°. When the applied external voltage between the ITO and the sessile droplet is less than 50 V, the contact angle continuously changed from 165° to 120°, and exhibits instant reversibility. For a slightly higher voltage, a mutation of the contact angle changing to 100° was observed and the contact angle was not reversible after removing the applied voltage, which indicates a transition from non-wetting state to wetting state. Further increasing of the applied voltage, the apparent contact angle decreased to an invariable value 70°, and electrical breakdown emerged synchronously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Hayes, B.J. Feenstra, Nature (2003)

  2. M.G. Pollack, R.B. Fair, A.D. Shenderov, Appl. Phys. Lett. 77, 1725 (2000)

    Article  ADS  Google Scholar 

  3. X.Y. Song, J. Zhai, Y.L. Wang, L. Jiang, J. Phys. Chem. B 109, 4048 (2005)

    Article  Google Scholar 

  4. Y.C. Hong, H.S. Uhm, Appl. Phys. Lett. 88, 1 (2006)

    Google Scholar 

  5. E. Balaur, J.M. Macak, H. Tsuchiya, P. Schmuki, J. Mater. Chem. 15, 4488 (2005)

    Article  Google Scholar 

  6. W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Oner, J. Youngblood, T.J. McCarthy, Langmuir 15, 3395 (1999)

    Article  Google Scholar 

  7. S.R. Coulson, I. Woodward, J.P.S. Badyal, S.A. Brewer, C.J. Willis, J. Phys. Chem. B 104, 8836 (2000)

    Article  Google Scholar 

  8. R. Furstner, W. Barthlott, Langmuir 21, 956 (2005)

    Article  Google Scholar 

  9. J.Y. Shiu, C.W. Kuo, P. Chen, C.Y. Mou, Chem. Mater. 16, 561 (2004)

    Article  Google Scholar 

  10. T.J. McCarthy, D. Oner, Langmuir 16, 7777 (2000)

    Article  Google Scholar 

  11. L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 42, 800 (2003)

    Article  Google Scholar 

  12. T.Y. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J.C. Zhao, N.J. Serpone, Photochem. Photobiol. A, Chem. 140, 163 (2001)

    Article  Google Scholar 

  13. N. Verplanck, E. Galopin, J.C. Camart, V. Thomy, Nano Lett. 3, 813 (2007)

    Article  ADS  Google Scholar 

  14. A. Ahuja, J.A. Taylor, V. Lifton, A.A. Sidorenko, T.R. Salamon, E.J. Lobaton, P. Kolodner, T.N. Krupenkin, Langmuir 23, 9128 (2007)

    Article  Google Scholar 

  15. V. Bahadur, S.V. Garimella, Langmuir 23, 4918 (2007)

    Article  Google Scholar 

  16. V. Bahadur, S.V. Garimella, Langmuir 23, 4918 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Xia, J., Lei, W. et al. Electrowetting on ZnO nanowires. Appl. Phys. A 99, 931–934 (2010). https://doi.org/10.1007/s00339-010-5697-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5697-x

Keywords

Navigation