Skip to main content
Log in

Effective hydrogenation and surface damage induced by MW-ECR plasma of fine-grained polycrystalline silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work reports the investigations on the effects of the hydrogenation process of thin film polycrystalline n+pp+ mesa silicon cells using MW-ECR plasma in a conventional PECVD system. Different operating parameters such as MW-ECR power, annealing temperature and the doping level of the emitter region were varied. The n+-type emitter regions were obtained by phosphorus diffusion in a conventional furnace using an oxide doping source containing phosphorus (P507 or P509 solutions, from Filmtronics Inc.). The MW hydrogenation was carried out at a sample temperature of 400°C for 60 min. Both types of emitters formed from P507 and P509 showed V oc of 155 mV and 206 mV, which increased linearly to 305 mV and 331 mV, respectively, after hydrogenation when the MW power varied from 200 to 650 W. However, the sheet resistances of the n+ emitter region showed a slight increase depending upon hydrogenation power because of its etching. In a further study, hydrogenated samples were annealed in neutral or forming gas (FG) and we observed interesting results on V oc in the presence of FG. The FG annealing temperature study revealed a strong dependence of V oc on MW power, which affected the etching level of emitter and emitter dopant concentration, which controls the diffusion of hydrogen ions during post-hydrogenation step. The results were explained in detail by combining the effects of MW power and dopant level of the emitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Taretto, U. Rau, J.H. Werner, J. Appl. Phys. 93, 5447 (2003)

    Article  ADS  Google Scholar 

  2. L. Carnel, H.F.W. Dekkers, I. Gordon, D. Van Gestel, G. Beaucarne, J. Poortmans, IEEE Electron Device Lett. 27, 163 (2006)

    Article  ADS  Google Scholar 

  3. A. Zozime, J. Castaing, Mater. Sci. Eng. B 42, 57 (1996)

    Article  Google Scholar 

  4. S.J. Pearton, J.W. Corbett, T.S. Shi, Appl. Phys. A 43, 153 (1987)

    Article  ADS  Google Scholar 

  5. A. Slaoui, E. Pihan, I. Ka, N.A. Mbow, S. Roques, J.M. Koebel, Sol. Energy Mater. Sol. Cells 90, 2087 (2006)

    Article  Google Scholar 

  6. D.R. Campbell, Appl. Phys. Lett. 36, 604 (1980)

    Article  ADS  Google Scholar 

  7. G.P. Pollack, W.F. Richardson, S.D.S. Malhi, T. Bonifield, H. Shichijo, S. Banerjee, M. Elahy, A.H. Shah, R. Womack, P.K. Chatterjee, IEEE Electron Dev. Lett. 5, 468 (1984)

    Article  Google Scholar 

  8. R.A. Ditizio, G. Liu, S.J. Fonash, B.C. Hseih, D.W. Greve, Appl. Phys. Lett. 56, 1140 (1990)

    Article  ADS  Google Scholar 

  9. A. Slaoui, P. Siffert, Polycrystalline silicon films for electronic devices, in Silicon: Evolution and Future of a Technology, ed. by E.F. Krimmel, P. Siffert (Springer, Berlin, 2004), p. 49

    Google Scholar 

  10. G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs, R. Mertens, in Thin-Film Structure for Photovoltaic Proceeding Material Research Symposium, vol. 485, p. 89 (1998)

  11. L. Carnel, I. Gordon, D. Van Gestel, D. Vanhaeren, P. Eyben, G. Beaucarne, J. Poortmans, IEEE Electron Device Lett. 28, 899 (2007)

    Article  ADS  Google Scholar 

  12. T. Unagami, T. Takeshita, IEEE Trans. Electron Dev. 36, 529 (1989)

    Article  ADS  Google Scholar 

  13. Y. Okamoto, H. Tamagawa, Rev. Sci. Instrum. 43, 1193 (1972)

    Article  Google Scholar 

  14. S.F. Yoon, K.H. Tan, Q. Zhang, M. Rusli, J. Ahn, L. Valeri, Vacuum 61, 29 (2000)

    Article  Google Scholar 

  15. E. Hyman, K. Tsang, A. Drobot, B. Lane, J. Casey, R. Post, J. Vac. Sci. Technol. A 12, 1474 (1994)

    Article  ADS  Google Scholar 

  16. R. Rizk, P. De Mierry, D. Ballutaud, M. Aucouturier, D. Mathiot, Physica B 170, 129 (1991)

    Article  ADS  Google Scholar 

  17. G. Beaucarne, S. Bourdais, A. Slaoui, J. Poortmans, Thin Solid Films 403/404, 229 (2002)

    Article  Google Scholar 

  18. L.L. Kazmerski, J.R. Dick, J. Vac. Sci. Technol. A 2, 1120 (1984)

    Article  ADS  Google Scholar 

  19. H.E.A. Elgamel, J. Nijs, R. Mertens, M.G. Mauk, A.M. Barnett, Sol. Energy Mater. Sol. Cells 53, 277 (1998)

    Article  Google Scholar 

  20. B.L. Sopori, X. Deng, J.P. Benner, A. Rohatgi, P. Sana, S.K. Estreicher, Y.K. Park, M.A. Roberson, Sol. Energy Mater. Sol. Cells 41/42, 159 (1996)

    Article  Google Scholar 

  21. H.P. Gillis, D.A. Choutov, P.A. Steiner IV, J.D. Piper, J.H. Crouch, P.M. Dove, K.P. Martin, Appl. Phys. Lett. 66, 2475 (1995)

    Article  ADS  Google Scholar 

  22. H.F. Winters, J. Appl. Phys. 49, 5165 (1978)

    Article  ADS  Google Scholar 

  23. S.C. Brown, Basic Data of Plasma Physics (MIT Press, Cambridge, 1966), p. 131

    Google Scholar 

  24. G. Rajagopalan, N.S. Reddy, H. Ehsani, I.B. Bhat, P.S. Dutta, R.J. Gutmann, G. Nichols, O. Sulima, J. Electron. Mater. 32, 1317 (2003)

    Article  ADS  Google Scholar 

  25. T. Makino, H. Makamura, Appl. Phys. Lett. 36, 831 (1980)

    Article  Google Scholar 

  26. A. Lam, Appl. Phys. Lett. 40, 54 (1982)

    Article  ADS  Google Scholar 

  27. P. Sana, A. Rohatgi, J.P. Kalejs, R.O. Bell, Appl. Phys. Lett. 64, 97 (1994)

    Article  ADS  Google Scholar 

  28. S. Martinuzzi, Rev. Phys. Appl. 22, 637 (1987)

    Google Scholar 

  29. N.H. Nickel, N.M. Johnson, W.B. Jackson, Appl. Phys. Lett. 62, 3285 (1993)

    Article  ADS  Google Scholar 

  30. K. Kitahara, S. Murakami, A. Hara, K. Nakajima, Appl. Phys. Lett. 72, 2436 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Madi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madi, D., Prathap, P., Focsa, A. et al. Effective hydrogenation and surface damage induced by MW-ECR plasma of fine-grained polycrystalline silicon. Appl. Phys. A 99, 729–734 (2010). https://doi.org/10.1007/s00339-010-5623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5623-2

Keywords

Navigation