Skip to main content
Log in

Heating of an Atomic Force Microscope tip by femtosecond laser pulses

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For various applications of nanoscale surface modification by an Atomic Force Microscope, one would like to maintain the AFM tip near the surface and at an accurately controlled elevated temperature. We study the laser heating of an ordinary AFM silicon tip under ambient conditions, and show that a tightly focused laser beam can heat the tip apex to the desired temperature, while affecting the cantilever quite moderately. We demonstrate that the observation of the shift of the silicon Raman line scattered from the tip is an efficient and accurate way to determine the tip temperature, and we substantiate our observations by theoretically modeling the dynamics of heat accumulation in the tip-cantilever system. For situations where Raman measurements are not feasible, we introduce a new method for estimating the tip temperature by monitoring the mechanical resonance frequency shift of the probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Piner, J. Zhu, F. Xu, S.H. Hong, C.A. Mirkin, Science 283, 661 (1999)

    Article  Google Scholar 

  2. A. Kirsanov, A. Kiselev, A. Stepanov, N. Polushkin, J. Appl. Phys. 94, 6822 (2003)

    Article  ADS  Google Scholar 

  3. S. Manne, P.K. Hansma, J. Massie et al., Science 251, 183 (1991)

    Article  ADS  Google Scholar 

  4. W.P. King, S. Saxena, B.A. Nelson, B. Weeks, Nanoletters 6, 2145 (2006)

    ADS  Google Scholar 

  5. H.J. Mamin, D. Rugar, Appl. Phys. Lett. 61, 1003 (1992)

    Article  ADS  Google Scholar 

  6. A. Chimmalgi, T.Y. Choi, C.P. Grigoropoulos, Appl. Phys. Lett. 82, 1146 (2003)

    Article  ADS  Google Scholar 

  7. Y.F. Lu, B. Hu, Z.H. Mai et al., Jpn. J. Appl. Phys. Part 1 40, 4395 (2001)

    Article  Google Scholar 

  8. R. Huber, M. Koch, J. Feldmann, Appl. Phys. Lett. 73, 2521 (1998)

    Article  ADS  Google Scholar 

  9. J. Boneberg, H.J. Munzer, M. Tresp et al., Appl. Phys. A 67, 381 (1998)

    Article  ADS  Google Scholar 

  10. A.A. Milner, K. Zhang, Y. Prior, Nanoletters 8, 2017 (2008)

    ADS  Google Scholar 

  11. P.O. Chapuis, J.J. Greffet, K. Joulain, S. Volz, Nanotechnology 17, 2978 (2006)

    Article  ADS  Google Scholar 

  12. B. McCarthy, Y. Zhao, R. Grover, D. Sarid, Appl. Phys. Lett. 86, 111914 (2005)

    Article  ADS  Google Scholar 

  13. S.M. Huang, M.H. Hong, Y.F. Lu et al., J. Appl. Phys. 91, 3268 (2002)

    Article  ADS  Google Scholar 

  14. M. Balkanski, R.F. Wallis, E. Haro, Phys. Rev. B 28, 1928 (1983)

    Article  ADS  Google Scholar 

  15. U. Gysin, Phys. Rev. B 69, 045403 (2004)

    Article  ADS  Google Scholar 

  16. M.L. Nandanpawar, J. Appl. Phys. 49, 7 (1978)

    Article  Google Scholar 

  17. T.Y. Choi, C.P. Grigoropoulos, J. Appl. Phys. 92, 4918 (2002)

    Article  ADS  Google Scholar 

  18. B.N. Chichkov, C. Momma, S. Nolte et al., Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  19. S. Lefevre, S. Volz, P.O. Chapuis, Int. J. Heat. Mass. Trans. 49, 251 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Milner.

Additional information

These authors had equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milner, A.A., Zhang, K., Garmider, V. et al. Heating of an Atomic Force Microscope tip by femtosecond laser pulses. Appl. Phys. A 99, 1–8 (2010). https://doi.org/10.1007/s00339-010-5601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5601-8

Keywords

Navigation