Skip to main content
Log in

Physical and chemical modifications of PET surface using a laser-plasma EUV source

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Extreme ultraviolet (EUV) radiation is the electromagnetic radiation ranging from vacuum ultraviolet to soft X-rays. A single EUV photon carries enough energy to ionize any atom or molecule. The penetration depth of the radiation in any material is very short, ranging from tens to hundreds nanometers. Intense EUV pulses can remove material from the surface or modify its morphology or/and chemical structure. In this work, the radiation from a laser-plasma EUV source based on a double-stream gas-puff target was used for surface modification of polyethylene terephthalate (PET). The PET samples were irradiated with the EUV pulses emitted from krypton plasma and focused with a gold-plated ellipsoidal collector. The spectrum of the focused radiation covered the wavelength range from 9 to 70 nm. The PET samples were irradiated for 1 s–2 min at a 10-Hz repetition rate. Surface morphology of polymer samples after irradiation was investigated using a scanning electron microscope. Changes in chemical surface structure of the irradiated samples were investigated using an X-ray photoelectron spectroscopy. Different kinds of surface microstructures were obtained depending on the EUV fluence in a single pulse and the total EUV fluence. XPS measurements also revealed a modification of the chemical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bacakova, V. Mares, V. Lisa, V. Svorcik, Biomaterials 21, 1173–1179 (2000)

    Article  Google Scholar 

  2. M. Collaud Coen, R. Lehmann, P. Groening, L. Schlapbach, Appl. Surf. Sci. 207, 276–286 (2003)

    Article  ADS  Google Scholar 

  3. T. Lippert, Adv. Polym. Sci. 168, 51–246 (2004)

    Google Scholar 

  4. T. Gumpenberger, J. Heitz, D. Bauerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, F. Leisch, Biomaterials 24, 5139–5144 (2003)

    Article  Google Scholar 

  5. R. Mikulikova, S. Moritz, T. Gumpenberger, M. Olbrich, C. Romanin, L. Bacakova, V. Svorcik, J. Heitz, Biomaterials 26, 5572–5580 (2005)

    Article  Google Scholar 

  6. G. Beamson, J. Electron Spectrosc. Relat. Phenom. 154, 83–89 (2007)

    Article  Google Scholar 

  7. G. Beamson, D.T. Clark, N.W. Hayes, D.S.-L. Law, V. Siracusa, A. Recca, Polymer 37, 379–385 (1996)

    Article  Google Scholar 

  8. K.K. Okudaira, S. Hasegawa, P.T. Sprunger, E. Morikawa, V. Saile, K. Seki, Y. Harada, N. Ueno, J. Appl. Phys. 83, 4292–4298 (1998)

    Article  ADS  Google Scholar 

  9. S. Lazare, R. Srinivasan, J. Phys. Chem. 90, 2124–2131 (1986)

    Article  Google Scholar 

  10. http://www-cxro.lbl.gov/

  11. B. Hopp, Zs. Bor, E. Homolya, E. Mihalik, Appl. Surf. Sci. 109/110, 232–235 (1997)

    Article  Google Scholar 

  12. N.S. Murthy, R.D. Prabhu, J.J. Martin, L. Zhou, R.L. Headrick, J. Appl. Phys. 100, 023538 (2006)

    Article  ADS  Google Scholar 

  13. H. Niino, A. Yabe, S. Nagano, T. Miki, Appl. Phys. Lett. 54, 2159–2161 (1989)

    Article  ADS  Google Scholar 

  14. W. Chen, J. Zhang, Q. Fang, K. Hu, I.W. Boyd, Thin Solid Films 453–454, 3–6 (2004)

    Article  Google Scholar 

  15. M. Rauh, J. Ihlemann, A. Koch, Appl. Phys. A 88, 231–233 (2007)

    Article  ADS  Google Scholar 

  16. A. Vesel, M. Mozetic, A. Zalar, Vacuum 82, 248–251 (2008)

    Article  Google Scholar 

  17. M.L. Everett, G.B. Hoflund, Appl. Surf. Sci. 252, 3789–3798 (2006)

    Article  ADS  Google Scholar 

  18. E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, Biomaterials 29, 1796–1806 (2008)

    Article  Google Scholar 

  19. A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, A. Szczurek, M. Szczurek, Appl. Phys. B 96, 727–730 (2009)

    Article  ADS  Google Scholar 

  20. G. Beamson, D. Briggs, High Resolution XPS of Organic Polymers. The Scienta ESCA300 Database (Wiley, Chichester, 1992)

    Google Scholar 

  21. E. Arenholz, V. Svorcik, T. Kefer, J. Heitz, D. Bauerle, Appl. Phys. A 53, 330–331 (1991)

    Article  ADS  Google Scholar 

  22. J. Heitz, E. Arenholz, D. Bauerle, R. Sauerbrey, H.M. Phillips, Appl. Phys. A 59, 289–293 (1994)

    Article  ADS  Google Scholar 

  23. D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 1996)

    Google Scholar 

  24. E. Arenholz, M. Wagner, J. Heitz, D. Bäuerle, Appl. Phys. A 55, 119–120 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bartnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartnik, A., Fiedorowicz, H., Jarocki, R. et al. Physical and chemical modifications of PET surface using a laser-plasma EUV source. Appl. Phys. A 99, 831–836 (2010). https://doi.org/10.1007/s00339-010-5596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5596-1

Keywords

Navigation