Skip to main content
Log in

Energetic Sn+ irradiation effects on ruthenium mirror specular reflectivity at 13.5-nm

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sn+ irradiations of Ru single-layer mirrors (SLM) simulate conditions of fast-Sn ion exposure in high-intensity 13.5 nm lithography lamps. Ultra-shallow implantation of Sn is measured down to 1–1.5 nm depth for energies between 1–1.3 keV at near-normal incident angles on Ru mirror surfaces. The Sn surface concentration reaches an equilibrium of 55–58% Sn/Ru for near-normal incidence and 36–38% for grazing incidence at approximately 63 degrees with respect to the mirror surface normal. The relative reflectivity at 13.5 nm at 15-degree incidence was measured in-situ during Sn+ irradiation. For near-normal Sn+ exposures the reflectivity is measured to decrease between 4–7% for a total Sn fluence of 1016 cm−2. Theoretical Fresnel reflectivity modeling shows for the same fluence assuming all Sn atoms form a layer on the Ru mirror surface, that the reflectivity loss should be between 15–18% for this dose. Ex-situ absolute 13.5 nm reflectivity data corroborate these results, indicating that implanted energetic Sn atoms mixed with Ru reflect 13.5-nm light differently than theoretically predicted by Fresnel reflectivity models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Stamm, J. Phys. D, Appl. Phys. 37, 3244 (2004)

    Article  ADS  Google Scholar 

  2. V. Sizyuk, A. Hassanein, T. Sizyuk, J. Appl. Phys. 100, 103106 (2006)

    Article  ADS  Google Scholar 

  3. V. Bakshi, EUV Sources for Lithography (SPIE Press, Bellingham, 2006)

    Google Scholar 

  4. A. Hassanein, V. Sizyuk, V. Tolkach, V. Morozov, J. Microlithogr. Microfabr. Microsyst. 3(1), 130 (2004)

    Article  ADS  Google Scholar 

  5. O. Morris, P. Hayden, P. Dunne, F. O’Reilly, G. O’Sullivan, E. Sokell, E.L. Antonsen, S.N. Srivastava, K.C. Thompson, D.N. Ruzic, J. Phys. Conf. Ser. 58, 391 (2007)

    Article  ADS  Google Scholar 

  6. D.L. Windt, Comput. Phys. 12(4), 360 (1998)

    Article  ADS  Google Scholar 

  7. J.P. Allain, M. Nieto, M.R. Hendricks, P. Plotkin, S.S. Harilal, A. Hassanein, Rev. Sci. Instrum. 78, 113105 (2007)

    Article  ADS  Google Scholar 

  8. L.G. Glazov, V.I. Shulga, P. Sigmund, Surf. Interface Anal. 26, 512 (1998)

    Article  Google Scholar 

  9. K. Wittmaack, Phys. Rev. B 68, 235211 (2003)

    Article  ADS  Google Scholar 

  10. J.P. Allain, M. Nieto, S.S. Harilal, M.R. Hendricks, A. Hassanein, Proc. SPIE 6586, 31 (2007)

    Google Scholar 

  11. K. Bergmann, O. Rosier, Chr. Metzmacher, Rev. Sci. Instrum. 76, 043104 (2005)

    Article  ADS  Google Scholar 

  12. H. Gnaser, Low-energy Ion Irradiation of Solid Surfaces (Springer, Berlin, 1999)

    Google Scholar 

  13. P. Sigmund, L.G. Glazov, Nucl. Instrum. Methods Phys. Res. B 164–165, 453 (2000)

    Article  Google Scholar 

  14. P. Sigmund, N.Q. Lam, Mat.-fys. Medd. K. Dan. Vidensk. Selsk. 43, 255 (1993)

    Google Scholar 

  15. P. Sigmund, A. Oliva, Nucl. Instrum. Methods Phys. Res. B 82, 269 (1993)

    Article  ADS  Google Scholar 

  16. P. Sigmund, Phys. Rev. 184(2), 383 (1969)

    Article  ADS  Google Scholar 

  17. V.I. Shulga, W. Eckstein, Nucl. Instrum. Methods Phys. Res. B 145, 492 (1998)

    Article  ADS  Google Scholar 

  18. J.P. Allain, A. Hassanein, M. Nieto, C. Chrobak, D. Rokusek, M.M.C. Allain, B.J. Heuser, B. Rice, Nucl. Instrum. Methods Phys. Res. B 242, 520 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Allain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allain, J.P., Nieto-Perez, M., Hendricks, M.R. et al. Energetic Sn+ irradiation effects on ruthenium mirror specular reflectivity at 13.5-nm. Appl. Phys. A 100, 231–237 (2010). https://doi.org/10.1007/s00339-010-5581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5581-8

Keywords

Navigation