Skip to main content
Log in

Mid infrared band gap properties of 3-dimensional silicon inverse opal photonic crystal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By the solvent vaporization convection self-assembly method, 1.86 μm silica microspheres were assembled into a colloidal crystal template with long-range order. High refractive index silicon was then filled in the voids of the silica template by the low pressure chemical vapor deposition method. A 3-dimensional silicon inverse opal photonic crystal was obtained with a photonic band gap simulated by a plane wave expansion method. Its micro modality and photonic band gap properties were characterized by scanning electron microscopy and Fourier transform IR spectrometer. There was a good agreement between the measured spectra and the simulated results. The tilt-angle reflectance spectra showed that an obvious reflection peak at 3319 nm stayed in existence with different incidence directions. This result proved that silicon inverse opal has a complete photonic band gap in the mid infrared range. This study opens up an opportunity to create Si-based photonic crystal devices for atmosphere mid infrared photodetection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  3. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386, 143 (1997)

    Article  ADS  Google Scholar 

  4. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, Nature 405, 437 (2000)

    Article  ADS  Google Scholar 

  5. Y.A. Vlasov, X.Z. Bo, J.C. Sturm, D.J. Norris, Nature 414, 289 (2001)

    Article  ADS  Google Scholar 

  6. L. Pallavidino, D. Santamaria Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L.C. Andreani, C. Ricciardi, E. Celasco, M. Quaglio, F. Giorgis, J. Non-Cryst. Solids 352, 1425 (2006)

    Article  ADS  Google Scholar 

  7. Y.J. Li, K. Xie, J. Xu, Y.F. Long, Mater. Rev. 20, 129 (2006). (In Chinese)

    Google Scholar 

  8. E. Palacios-Lidón, A. Blanco, M. Ibisate, F. Meseguer, C. López, Appl. Phys. Lett. 81, 4925 (2002)

    Article  ADS  Google Scholar 

  9. Y.A. Vlasov, V.N. Astratov, A.V. Baryshev, Phys. Rev. E 61, 5784 (2000)

    Article  ADS  Google Scholar 

  10. F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer, C. López, Adv. Mater. 15, 788 (2003)

    Article  Google Scholar 

  11. H. Miguez, N. Tetreault, B. Hatton, S.M. Yang, D. Perovic, G.A. Ozin, Chem. Commun. 22, 2736 (2002)

    Article  Google Scholar 

  12. K.M. Leung, Y.F. Liu, Phys. Rev. B 41, 10188 (1990)

    Article  ADS  Google Scholar 

  13. K. Busch, S. John, Phys. Rev. E 58, 3896 (1998)

    Article  ADS  Google Scholar 

  14. A.L. Reynolds, The photonic band gap materials research group within the optoelectronics research group of the Department of Electronics and Electrical Engineering, The University of Glasgow (2000). Translight: Copyright

  15. S.G. Johnson, J.D. Joannopoulos, Opt. Express 8173 (2001)

  16. R. Biswas, M.M. Sigalas, G. Subramania, C.M. Soukoulis, K.M. Ho, Phys. Rev. B 61, 4549 (2000)

    Article  ADS  Google Scholar 

  17. V.N. Astratov, A.M. Adawi, S. Fricker, M.S. Skolnick, D.M. Whittaker, P.N. Pusey, Phys. Rev. B 66, 165215 (2002)

    Article  ADS  Google Scholar 

  18. Y.A. Vlasov, V.N. Astratov, A.V. Baryshev, A.A. Kaplyanskii, O.Z. Karimov, M.F. Limonov, Phys. Rev. E 61, 5784 (2000)

    Article  ADS  Google Scholar 

  19. B. Cheng, P. Ni, C. Jin, Z. Li, D. Zhang, P. Dong, X. Guo, Opt. Commun. 170, 41 (1999)

    Article  ADS  Google Scholar 

  20. R.C. Salvarezza, L. Vazques, H. Miguez, R. Mayoral, C. Lopez, F. Meseguer, Phys. Rev. Lett. 77, 4572 (1996)

    Article  ADS  Google Scholar 

  21. M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, C.M. Soukoulis, Phys. Rev. B 64, 195113 (2001)

    Article  ADS  Google Scholar 

  22. Z.Y. Li, Z.Q. Zhang, Phys. Rev. B 62, 1516 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jie Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YJ., Xie, K., Xu, J. et al. Mid infrared band gap properties of 3-dimensional silicon inverse opal photonic crystal. Appl. Phys. A 99, 117–123 (2010). https://doi.org/10.1007/s00339-010-5565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5565-8

Keywords

Navigation