Skip to main content
Log in

Effects of electrospinning process parameters on nanofibers obtained from Nylon 6 and poly (ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using Johnson SB statistical distribution function

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The impact strength of Nylon 6 can be further improved by blending it with ethylene-butyl acrylate-maleic anhydride elastomer. The blending is achieved in solution phase. Due to incompatibility of Nylon 6 and the elastomer, a special mixture of solvents is used to dissolve both components. The solution is electrospun, and the effects of the process parameters on the expected radii of nanofibers are investigated. The effects of process parameters such as polymer concentration in solution, electrical field, diameter of the syringe needle, feed rate, and collector geometry on nanofibers were investigated. Statistical analysis is carried out using the Johnson SB distribution. A relation is proposed to relate the effect of the process parameters feed rate, electrical voltage, and tip to collector distance on the expected diameter of fibers. It is found that concentration and electrical field have a profound effect on the diameter of fibers compared to those of the syringe diameter and feed rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.-M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)

    Article  Google Scholar 

  2. S. Ramakrishna, An Introduction to Electrospinning and Nanofibers (World Scientific, New Jersey, 2005)

    Book  Google Scholar 

  3. A. Koski, K. Yim, S. Shivkumar, Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 58(3–4), 493–497 (2004)

    Article  Google Scholar 

  4. S. Wongsasulak, K.M. Kit, D.J. McClements, T. Yoovidhya, J. Weiss, The effect of solution properties on the morphology of ultrafine electrospun egg albumen-PEO composite fibers. Polymer 48(2), 448–457 (2007)

    Article  Google Scholar 

  5. H.-W. Tong, M. Wang, Effects of processing parameters on the morphology and size of electrospun PHBV micro- and nano-fibers. Key Eng. Mater. 334–335(II), 1233–1236 (2007)

    Article  Google Scholar 

  6. J. Macossay, A. Marruffo, R. Rincon, T. Eubanks, A. Kuang, Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate). Polym. Adv. Technol. 18(3), 180–183 (2007)

    Article  Google Scholar 

  7. A. Theron, E. Zussman, A.L. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 3, 384 (2001)

    Article  ADS  Google Scholar 

  8. K.-H. Lee, K.-W. Kim, A. Pesapane, H.-Y. Kim, J.F. Rabolt, Polarized FT-IR study of macroscopically oriented electrospun Nylon-6 nanofibers. Macromolecules 41(4), 1494–1498 (2008)

    Article  ADS  Google Scholar 

  9. K. Jun, H.G. Craighead, Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning. Appl. Phys. Lett. 83(2), 371–373 (2003)

    Article  Google Scholar 

  10. A.T. Allen, Particle Size Measurement (Springer, Berlin, 1997)

    Google Scholar 

  11. Q. Li, Y. Yang, Z. Jia, Z. Guan, Experimental investigation of the effect of processing parameters on the formation of electrospun polyethylene oxide nanofibers. Gaodianya Jishu/High Volt. Eng. 33(2), 186–189 (2007)

    Google Scholar 

  12. O.O. Dosunmu, G.G. Chase, W. Kataphinan, D.H. Reneker, Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology 17(4), 1123–1127 (2006)

    Article  ADS  Google Scholar 

  13. M.R. Flynn, The 4-parameter lognormal (SB) model of human exposure. Ann. Occup. Hyg. 48(7), 617–622 (2004)

    Article  Google Scholar 

  14. Y. Ai-Bing, Johnson’s SB distribution function as applied in the mathematical representation of particle size distributions. Part 2: Application of numerical results. Part. Part. Syst. Char. 11(5), 367–374 (1994)

    Article  Google Scholar 

  15. N.L. Johnson, Systems of curves generated by methods of translation. Biometrika 36(1–2), 149–176 (1949)

    MATH  MathSciNet  Google Scholar 

  16. M.R. Flynn, On the moments of the 4-parameter lognormal distribution. Commun. Stat. Theory Methods 34(4), 745–751 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Z. Jian-Feng, Y. Dong-Zhi, N. Jun, Effect of electric potential and coulombic interactions on electrospinning nanofiber distribution. Polym. Int. 57(10), 1194–1197 (2008)

    Article  Google Scholar 

  18. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison–Wesley, Reading, 1964)

    Google Scholar 

  19. E. Zhmayev, H. Zhou, Y.L. Joo, Modeling of non-isothermal polymer jets in melt electrospinning. J. Non-Newton. Fluid Mech. 153(2–3), 95–108 (2008)

    Article  Google Scholar 

  20. Y.-H. He, Y. Jian-Yong, Allometric scaling and instability in electrospinning. Int. J. Nonlinear Sci. Numer. Simul. 5(3), 243–252 (2004)

    Google Scholar 

  21. E. Biber, G. Gündüz, B. Mavis, U. Colak, Compatibility analysis of Nylon 6 and poly (ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using isothermal crystallization kinetics. Mater. Chem. Phys. (2010, under review)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Biber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biber, E., Gündüz, G., Mavis, B. et al. Effects of electrospinning process parameters on nanofibers obtained from Nylon 6 and poly (ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using Johnson SB statistical distribution function. Appl. Phys. A 99, 477–487 (2010). https://doi.org/10.1007/s00339-010-5559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5559-6

Keywords

Navigation