Skip to main content
Log in

Improvement of the properties of CSD-processed (Pb0.76Ca0.24)TiO3 thin films by control of the solution chemistry

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ferroelectric (Pb0.76Ca0.24)TiO3 thin films were prepared on platinized Si substrates by chemical solution deposition (CSD). Two different synthetic strategies were adopted to optimize the functionality of the resulting perovskite films: (1) tailoring the schedule of the solution synthesis and (2) chemical selectivity of the calcium precursor. The choice of an appropriate synthetic procedure led to homogeneous sols constituted by a single distribution of particles, as revealed by dynamic light scattering (DLS). Stronger polymeric structures in the sol network are believed to prevent atomic diffusion of metal cations during crystallization at higher temperatures, and perovskite films with a uniform compositional profile and without any detrimental interface with the electrode were measured by Rutherford backscattering spectroscopy (RBS). On the other hand, phase formation and microstructure of crystalline films were strongly affected by the calcium compound used, i.e. calcium acetate or calcium acetylacetonate. The single decomposition mechanism of the last one, with absence of intermediate carbonates, resulted in the prompt crystallization of the perovskite phase (375°C) and an enhanced grain-growth mechanism that led to dense films formed by larger grains. Consequently, the optimized ferroelectric (Pb0.76Ca0.24)TiO3 films showed superior electrical properties: maximum values of dielectric constant nearly doubled and a relative increase in the remanent polarization being ∼40% (P r =23 µC/cm2). The potential application of these films in functional microelectronic devices is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T.J. Yamada, J. Appl. Phys. 100, 051606 (2006)

    Article  ADS  Google Scholar 

  2. R.W. Schwartz, T. Schneller, R. Waser, C. R. Chim. 7, 433 (2004)

    Google Scholar 

  3. S. Sakka (ed.), Handbook of Sol-gel Science and Technology, Processing, Characterization and Applications. Sol-gel Processing, vol. I (Kluwer Academic, Boston, 2005)

    Google Scholar 

  4. S.D. Ramamurthi, D.A. Payne, J. Am. Ceram. Soc. 73, 2547 (1990)

    Article  Google Scholar 

  5. M.J. Lefevre, J.S. Speck, R.W. Schwartz, D. Dimos, S.L. Lockwood, J. Mater. Res. 11, 2076 (1996)

    Article  ADS  Google Scholar 

  6. P.R. Coffman, C.K. Barlingay, A. Gupta, S.K. Dey, J. Sol-Gel Sci. Technol. 6, 83 (1996)

    Article  Google Scholar 

  7. A.Y. Wu, I.M.M. Salvado, P.M. Vilarinho, J.L. Baptista, J. Eur. Ceram. Soc. 17, 1443 (1997)

    Article  Google Scholar 

  8. S. Hoffmann, R. Waser, J. Eur. Ceram. Soc. 19, 1339 (1999)

    Article  Google Scholar 

  9. R.W. Schwartz, P.G. Clem, J.A. Voigt, E.R. Byhoff, M. Van Stry, T.J. Headley, N.A. Missert, J. Am. Ceram. Soc. 82, 2359 (1999)

    Article  Google Scholar 

  10. K. Kato, K. Suzuki, D.S. Fu, K. Nishizawa, T. Miki, Jpn. J. Appl. Phys., Part 1 41(11B), 6829 (2002)

    Article  Google Scholar 

  11. B. Malic, M. Kosec, I. Arcon, A. Kodre, J. Eur. Ceram. Soc. 25, 2241 (2005)

    Article  Google Scholar 

  12. T. Schneller, R. Waser, J. Sol-Gel Sci. Technol. 42, 337 (2007)

    Article  Google Scholar 

  13. U. Hasenkox, S. Hoffmann, R. Waser, J. Sol-Gel Sci. Technol. 12, 67 (1998)

    Article  Google Scholar 

  14. R.W. Schwartz, J.A. Voigt, B.A. Tuttle, D.A. Payne, T.L. Reichert, R.S. DaSalla, J. Mater. Res. 12, 444 (1997)

    Article  ADS  Google Scholar 

  15. I. Bretos, J. Ricote, R. Jiménez, J. Mendiola, R.J. Jiménez-Riobóo, M.L. Calzada, J. Eur. Ceram. Soc. 25, 2325 (2005)

    Article  Google Scholar 

  16. F.M. Pontes, D.S.L. Pontes, E.R. Leite, S. Longo, E.M.S. Santos, S. Mergulhao, A. Chiquito, P.S. Pisan, F. Lanciotti Jr., T.M. Boschi, J.A. Varela, J. Appl. Phys. 91, 6650 (2002)

    Article  ADS  Google Scholar 

  17. J. Mendiola, R. Jiménez, P. Ramos, C. Alemany, I. Bretos, M.L. Calzada, J. Appl. Phys. 98, 024106 (2005)

    Article  ADS  Google Scholar 

  18. M.L. Calzada, R. Jiménez, P. Ramos, M.J. Martín, J. Mendiola, J. Phys. IV 8, 53 (1998)

    Google Scholar 

  19. A.L. Kholkin, M.L. Calzada, P. Ramos, J. Mendiola, N. Setter, Appl. Phys. Lett. 69, 3602 (1996)

    Article  ADS  Google Scholar 

  20. R. Poyato, M.L. Calzada, L. Pardo, J. Appl. Phys. 93, 4081 (2003)

    Article  ADS  Google Scholar 

  21. M.L. Calzada, I. Bretos, R. Jiménez, J. Ricote, J. Mendiola, J. Am. Ceram. Soc. 88, 3388 (2005)

    Article  Google Scholar 

  22. M. Mayer, S.I.M.R.A. User’s Guide. Technical Report IPP 9/113, Max-Panck-Institut für Plasmaphysic, Garching (2006)

  23. C. Alemany, R. Jiménez, J. Revilla, J. Mendiola, M.L. Calzada, J. Phys. D, Appl. Phys. 32, L79 (1999)

    Article  ADS  Google Scholar 

  24. R. Dat, D.J. Lichtenwalner, O. Auciello, A.I. Kingon, Integr. Ferroelectr. 5, 275 (1994)

    Article  Google Scholar 

  25. R.A. Assink, R.W. Schwartz, Chem. Mater. 5, 511 (1993)

    Article  Google Scholar 

  26. D. Hennings, G. Rosenstein, H. Schreinemacher, J. Eur. Ceram. Soc. 8, 107 (1991)

    Article  Google Scholar 

  27. S.S. Sengupta, L. Ma, D.L. Adler, D.A. Payne, J. Mater. Res. 10, 1345 (1995)

    Article  ADS  Google Scholar 

  28. I. Bretos, R. Sirera, R. Jiménez, M.L. Calzada, Ferroelectrics 335, 79 (2006)

    Article  Google Scholar 

  29. M.L. Calzada, B. Malic, R. Sirera, M. Kosec, J. Sol-Gel, Sci. Technol. 23, 221 (2002)

    Google Scholar 

  30. I. Bretos, J. Ricote, R.J. Jiménez-Riobóo, L. Pardo, M.L. Calzada, Appl. Phys. A 89, 967 (2007)

    Article  ADS  Google Scholar 

  31. F. Calame, P. Muralt, Appl. Phys. Lett. 90, 062907 (2007)

    Article  ADS  Google Scholar 

  32. E. Yamaka, H. Watanabe, H. Kimura, H. Kanaya, H. Ohkuma, J. Vac. Sci. Technol. A 6, 2921 (1988)

    Article  ADS  Google Scholar 

  33. H. Maiwa, N. Ichinose, Jpn. J. Appl. Phys. 36, 5825 (1997)

    Article  ADS  Google Scholar 

  34. R. Jiménez, P. Ramos, M.L. Calzada, J. Mendiola, Bol. Soc. Esp. Ceram. Vidr. 37, 117 (1998)

    Google Scholar 

  35. Q. Zhang, R.W. Whatmore, J. Phys. D 34, 2296 (2001)

    Article  ADS  Google Scholar 

  36. R. Poyato, M.L. Calzada, L. Pardo, Appl. Phys. A 80, 369 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Calzada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bretos, I., Jiménez, R., Sirera, R. et al. Improvement of the properties of CSD-processed (Pb0.76Ca0.24)TiO3 thin films by control of the solution chemistry. Appl. Phys. A 99, 297–304 (2010). https://doi.org/10.1007/s00339-009-5530-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5530-6

Keywords

Navigation