Skip to main content
Log in

Tunable linear nanopatterns of disubstituted alkane derivatives containing bi-components via selective hydrogen bonding

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Supramolecular self-assembly on surfaces offers attractive features, which are usually tuned through the choice of the chain-length-varying molecular building blocks and stabilized by hydrogen bonding. Here the linear nanopatterns of bi-component building blocks between 1,18-octadecanedionic acid (HOOC(CH2)18COOH) and 4,4′-bipyridine (BPy), 1-hydroxyhexadecanoic acid (HO(CH2)15COOH) and BPy on highly ordered pyrolytic graphite are presented. By merely changing terminal groups, we reveal by using scanning tunneling microscopy (STM) that it is rational to steer the periodicity of the linearly patterned nanostructures with nanometer precision over an extended length scale. Different surface nanopatterns on graphite surface are created by tuning different disubstituted terminal groups and the ratio of them to their complementary recognizing molecules. The STM observations are supported by the reference nanostructure of bi-component 1,16-hexadecandiol (HO(CH2)16OH) and BPy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A.A.W. Elemans, S. De Feyter, Soft Matter 5, 721 (2009)

    Article  Google Scholar 

  2. P. Gambardella, S. Stepanow, A. Dmitriev, J. Honolka, F.M.F. de Groot, M. Lingenfelder, S.S. Gupta, D.D. Sarma, P. Bencok, S. Stanescu, S. Clair, S. Pons, N. Lin, A.P. Seitsonen, H. Brune, J.V. Barth, K. Kern, Nat. Mater. 8, 189 (2009)

    Article  ADS  Google Scholar 

  3. F. Besenbacher, J.V. Lauritsen, T.R. Linderoth, E. Lægsgaard, R.T. Vang, S. Wendt, Surf. Sci. 603, 1315 (2009)

    Article  ADS  Google Scholar 

  4. X. Ma, Y. Yang, K. Deng, Q. Zeng, K. Zhao, C. Wang, C. Bai, J. Mater. Chem. 18, 2074 (2008)

    Article  Google Scholar 

  5. Y. Yang, C. Wang, Chem. Soc. Rev. 38, 2576 (2009)

    Article  Google Scholar 

  6. R. Madueno, M.T. Räisänen, C. Silien, M. Buck, Nature 454, 618 (2008)

    Article  ADS  Google Scholar 

  7. J. Adisoejoso, K. Tahara, S. Okuhata, S. Lei, Y. Tobe, S. De Feyter, Angew. Chem. Int. Ed. 48, 436 (2009)

    Article  Google Scholar 

  8. S. Xu, Q. Zeng, J. Lu, C. Wang, L. Wan, C. Bai, Surf. Sci. 538, L451 (2003)

    Article  Google Scholar 

  9. X. Kong, K. Deng, Y. Yang, Q. Zeng, C. Wang, J. Phys. Chem. C 111, 17382 (2007)

    Article  Google Scholar 

  10. S. Lei, S. Yin, C. Wang, L. Wan, C. Bai, Chem. Mater. 14, 2837 (2002)

    Article  Google Scholar 

  11. K.G. Nath, O. Ivasenko, J.A. Miwa, H. Dang, J.D. Wuest, A. Nanci, D.F. Perepichka, F. Rosei, J. Am. Chem. Soc. 128, 4212 (2006)

    Article  Google Scholar 

  12. S. Xu, M. Dong, E. Rauls, R. Otero, T.R. Linderoth, F. Besenbacher, Nano Lett. 6, 1434 (2006)

    Article  ADS  Google Scholar 

  13. T. Kudernac, J.A.A.W.E.S. Lei, S. De Feyter, Chem. Soc. Rev. 38, 402 (2009)

    Article  Google Scholar 

  14. S.J.H. Griessl, M. Lackinger, F. Jamitzky, T. Markert, M. Hietschold, W.M. Heckl, J. Phys. Chem. B 108, 11556 (2004)

    Article  Google Scholar 

  15. G. Schull, L. Douillard, C. Fiorini-Debuisschert, F. Charra, Nano Lett. 6, 1360 (2006)

    Article  ADS  Google Scholar 

  16. L. Piot, C.-A. Palma, A. Llanes-Pallas, M. Prato, Z. Szekrényes, K. Kamarás, D. Bonifazi, P. Samorì, Adv. Funct. Mater. 19, 1 (2009)

    Google Scholar 

  17. S. Xu, S. Yin, H. Liang, C. Wang, L. Wan, C. Bai, J. Phys. Chem. B 108, 620 (2004)

    Article  Google Scholar 

  18. A. Langner, S.L. Tait, N. Lin, C. Rajadurai, M. Ruben, K. Kern, Proc. Natl. Acad. Sci. USA 104, 17927 (2007)

    Article  ADS  Google Scholar 

  19. J.A.A.W. Elemans, I. De Cat, H. Xu, S. De Feyter, Chem. Soc. Rev. 38, 722 (2009)

    Article  Google Scholar 

  20. P. Qian, H. Nanjo, T. Yokoyama, T.M. Suzuki, K. Akasakab, H. Orhuib, Chem. Commun. 20, 2021 (2000)

    Article  Google Scholar 

  21. B. Xu, S. Yin, C. Wang, Q. Zeng, X. Qiu, C. Bai, Surf. Interface Anal. 32, 245 (2001)

    Article  Google Scholar 

  22. K. Müllen, J.P. Rabe, Acc. Chem. Res. 41, 511 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shandong Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Yin, S. & Xu, S. Tunable linear nanopatterns of disubstituted alkane derivatives containing bi-components via selective hydrogen bonding. Appl. Phys. A 99, 99–103 (2010). https://doi.org/10.1007/s00339-009-5518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5518-2

Keywords

Navigation