Skip to main content
Log in

Investigation of low-temperature electrical conduction mechanisms in highly resistive GaN bulk layers extracted with Simple Parallel Conduction Extraction Method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electrical conduction mechanisms in various highly resistive GaN layers of Al x Ga1−x N/AlN/GaN/AlN heterostructures are investigated in a temperature range between T=40 K and 185 K. Temperature-dependent conductivities of the bulk GaN layers are extracted from Hall measurements with implementing simple parallel conduction extraction method (SPCEM). It is observed that the resistivity (ρ) increases with decreasing carrier density in the insulating side of the metal–insulator transition for highly resistive GaN layers. Then the conduction mechanism of highly resistive GaN layers changes from an activated conduction to variable range hopping conduction (VRH). In the studied temperature range, ln (ρ) is proportional to T −1/4 for the insulating sample and proportional to T −1/2 for the more highly insulating sample, indicating that the transport mechanism is due to VRH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura, S. Senoh, N. Iwasa, S. Nagahama, Jpn. J. Appl. Phys. 34, L797 (1995)

    Article  ADS  Google Scholar 

  2. Q. Chen, M.A. Khan, J.W. Yang, C.J. Sun, M.S. Shur, H. Park, J. Appl. Phys. 69, 794 (1996)

    Google Scholar 

  3. H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)

    Article  ADS  Google Scholar 

  4. A. Yildiz, F. Dagdelen, S. Acar, S.B. Lisesivdin, M. Kasap, Y. Aydogdu, M. Bosi, Acta Phys. Pol. (a) 113, 731 (2008)

    ADS  Google Scholar 

  5. R.K. Roy, S. Grupta, A.K. Pal, Thin Solid Films 483, 287 (2005)

    Article  ADS  Google Scholar 

  6. A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, Opt. Adv. Mater.-Rapid Commun. 1, 531 (2007)

    Google Scholar 

  7. A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, J. Non-Cryst. Solids 354, 4944 (2008)

    Article  ADS  Google Scholar 

  8. A. Yildiz, S.B. Lisesivdin, S. Acar, M. Kasap, M. Bosi, Chin. Phys. Lett. 24, 2930 (2007)

    Article  ADS  Google Scholar 

  9. A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, Physica B 404, 1423 (2009)

    Article  ADS  Google Scholar 

  10. M. Fehrer, S. Einfeldt, U. Birkle, T. Gollnik, D. Hommel, J. Cryst. Growth 189–190, 763 (1998)

    Article  Google Scholar 

  11. S.R. Bhattacharyya, A.K. Pal, Bull. Mater. Sci. 31, 73 (1982)

    Article  Google Scholar 

  12. H. Yu, M.K. Ozturk, S. Ozcelik, E. Ozbay, J. Cryst. Growth 293, 273 (2006)

    Article  ADS  Google Scholar 

  13. D.C. Look, D.C. Reynolds, W. Kim, O. Aktas, A. Botchkarev, A. Salvador, H. Morkoç, J. Appl. Phys. 80, 2960 (1996)

    Article  ADS  Google Scholar 

  14. E.F. Schubert, K. Ploog, H. Dämbkes, K. Heime, Appl. Phys. A 33, 63 (1984)

    Article  ADS  Google Scholar 

  15. I. Vurgaftman, J.R. Meyer, C.A. Hoffman, D. Redfern, J. Antoszewski, L. Farone, J.R. Lindemuth, J. Appl. Phys. 84, 4966 (1998)

    Article  ADS  Google Scholar 

  16. S.B. Lisesivdin, N. Balkan, E. Ozbay, Microelectron. J. 40, 413 (2009)

    Article  Google Scholar 

  17. J.S. Kim, D.G. Seiler, W.F. Tseng, J. Appl. Phys. 73, 8324 (1993)

    Article  ADS  Google Scholar 

  18. A. Wolkenberg, T. Przeslawski, J. Kaniewski, K. Reginski, J. Phys. Chem. Solids 64, 7 (2003)

    Article  ADS  Google Scholar 

  19. J. Antoszewski, L. Faraone, I. Vurgaftman, J.R. Meyer, C.A. Hoffman, J. Electron. Mater. 33, 673 (2004)

    Article  ADS  Google Scholar 

  20. M.J. Kane, N. Apsley, D.A. Anderson, L.L. Taylor, T. Kerr, J. Phys. C, Solid State Phys. 18, 5629 (1985)

    Article  ADS  Google Scholar 

  21. S.P. Tobin, G.N. Pultz, E.E. Krueger, M. Kestigian, K.K. Wong, P.W. Norton, J. Electron. Mater. 22, 907 (1993)

    Article  ADS  Google Scholar 

  22. W.A. Beck, J.R. Anderson, J. Appl. Phys. 62, 541 (1987)

    Article  ADS  Google Scholar 

  23. J.R. Meyer, C.A. Hoffman, F.J. Bartoli, D.J. Arnold, S. Sivananthan, J.P. Faurie, Semicond. Sci. Technol. 8, 805 (1993)

    Article  ADS  Google Scholar 

  24. J. Antoszewski, D.J. Seymour, L. Faraone, J.R. Meyer, C.A. Hoffman, J. Electron. Mater. 24, 1255 (1995)

    Article  ADS  Google Scholar 

  25. J.H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  26. S.B. Lisesivdin, S. Demirezen, M.D. Caliskan, A. Yildiz, M. Kasap, S. Ozcelik, E. Ozbay, Semicond. Sci. Technol. 23, 095008 (2008)

    Article  ADS  Google Scholar 

  27. B.K. Ridley, J. Phys. C, Solid State Phys. 15, 5899 (1982)

    Article  ADS  Google Scholar 

  28. M. Shur, B. Gelmont, M. Asif Khan, J. Electron. Mater. 25, 777 (1996)

    Article  ADS  Google Scholar 

  29. H. Morkoç, Nitride Semiconductors and Devices (Springer, Heidelberg, 1999)

    Google Scholar 

  30. S.N. Mohammad, H. Morkoc, Prog. Quantum Electron. 20, 361 (1996)

    Article  ADS  Google Scholar 

  31. N.F. Mott, W.D. Twose, Adv. Phys. 10, 107 (1961)

    Article  ADS  Google Scholar 

  32. N.F. Mott, E.A. Davis, Electronic Properties in Non-Crystalline Materials (Clarendon, Oxford, 1971)

    Google Scholar 

  33. A.L. Efros, B.I. Shklovskii, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984)

    Google Scholar 

  34. T.L. Tansley, R.J. Egan, Physica B 185, 190 (1993)

    Article  ADS  Google Scholar 

  35. A.G. Zabrodskii, K.N. Zinoveva, Sov. Phys. JETP 59, 425 (1984)

    Google Scholar 

  36. B.I. Shklovskii, Sov. Phys. Semicond. 6, 1053 (1973)

    Google Scholar 

  37. M.A. Di Forte-Poisson, F. Huet, A. Romann, M. Tordjman, D. Lancefield, E. Pereira, J. Di Persio, B. Pecz, J. Cryst. Growth 195, 314 (1998)

    Article  Google Scholar 

  38. D.C. Look, D.C. Reynolds, J.W. Hemsky, J.R. Sizelove, R.L. Jones, R.J. Molnar, Phys. Rev. Lett. 79, 2273 (1997)

    Article  ADS  Google Scholar 

  39. P. Hacke, A. Maekawa, N. Koide, K. Hiramatsu, N. Sawaki, Jpn. J. Appl. Phys. 33, 6443 (1994)

    Article  ADS  Google Scholar 

  40. W. Götz, N.M. Johnson, C. Chen, H. Liu, C. Kuo, W. Imler, Appl. Phys. Lett. 6, 3144 (1996)

    Article  Google Scholar 

  41. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)

    Article  ADS  Google Scholar 

  42. J.W. Orton, M.J. Powel, Rep. Prog. Phys. 43, 1263 (1980)

    Article  ADS  Google Scholar 

  43. J. Salzman, C. Uzan-Saguy, R. Kalish, V. Richter, B. Meyler, Appl. Phys. Lett. 76, 1431 (2000)

    Article  ADS  Google Scholar 

  44. J. Salzman, C. Uzan-Saguy, B. Meyler, R. Kalish, Phys. Stat. Sol. (a) 176, 683 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Lisesivdin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildiz, A., Lisesivdin, S.B., Kasap, M. et al. Investigation of low-temperature electrical conduction mechanisms in highly resistive GaN bulk layers extracted with Simple Parallel Conduction Extraction Method. Appl. Phys. A 98, 557–563 (2010). https://doi.org/10.1007/s00339-009-5507-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5507-5

Keywords

Navigation