Skip to main content
Log in

The influence of crystallinity enhancement on the magnetic properties of ac electrodeposited Fe nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Fe nanowire arrays with different degrees of crystallinity were fabricated by ac electrodeposition into anodic aluminium oxide templates. A (110) preferential crystal orientation was observed for all the samples. An extensive investigation of X-ray patterns revealed that the variation of the magnetic properties is a direct consequence of the crystallinity degree of Fe nanowires. The results indicate that the degree of crystallinity varies with electrolyte acidity, waveform and frequency of the ac electrodeposition voltage. Regardless of the waveform and electrolyte acidity, higher deposition frequency induces higher coercivity. The effect of waveform and pH value on the magnetic properties is seen to be more pronounced in the low deposition frequency. Improving the ac electrodeposition conditions increased the coercivity and squareness from almost 1010 Oe and 0.49 to 1810 Oe and 0.99, respectively. It was seen that annealing improved the crystallinity, thereby increasing the coercivity and squareness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hernandez-Velez, Thin Solid Films 495, 51 (2006)

    Article  ADS  Google Scholar 

  2. D. Appell, Nature 419, 553 (2002)

    Article  ADS  Google Scholar 

  3. T. Sano, N. Iguchi, K. Iida, T. Sakamoto, M. Baba, H. Kawaura, Appl. Phys. Lett. 83, 4438 (2003)

    Article  ADS  Google Scholar 

  4. L. Lechuga, Nanotechnology 14, 907 (2003)

    Article  ADS  Google Scholar 

  5. L. Piraux, S. Dubois, E. Ferain, J. Magn. Magn. Mater. 165, 352 (1997)

    Article  ADS  Google Scholar 

  6. P.M. Paulus, F. Luis, M. Kroll, G. Schmid, L.J. de Jongh, J. Magn. Magn. Mater. 224, 180 (2001)

    Article  ADS  Google Scholar 

  7. R.M. Metzger, V.V. Konovalov, M. Sun, T. Xu, G. Zangari, B. Xu, M. Benakli, W.D. Doyle, IEEE Trans. Magn. 36, 30 (2000)

    Article  ADS  Google Scholar 

  8. K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, Appl. Phys. Lett. 79, 1360 (2001)

    Article  ADS  Google Scholar 

  9. M. Darques, A. Encinas, L. Vila, L. Piraux, J. Phys. D, Appl. Phys. 37, 411 (2004)

    Article  Google Scholar 

  10. M. Almasi Kashi, A. Ramazani, A. Khayyatian, J. Phys. D, Appl. Phys. 39, 4130 (2006)

    Article  ADS  Google Scholar 

  11. V. Langlais, S. Arrii, L. Pontonnier, G. Tourillon, Scr. Mater. 44, 1315 (2001)

    Article  Google Scholar 

  12. X.Y. Zhang, G.H. Wen, Y.F. Chan, R.K. Zheng, X.X. Zhang, N. Wang, Appl. Phys. Lett. 83, 341 (2003)

    Article  Google Scholar 

  13. D.J. Sellmyer, M. Zheng, R. Skomski, J. Phys., Condens. Matter 13, R433 (2001)

    Article  ADS  Google Scholar 

  14. H.N. Hu, H.Y. Chen, J.L. Chen, G.H. Wu, Physica B 368, 100 (2005)

    Article  ADS  Google Scholar 

  15. W. He, X. Ma, Y.Q. Liang, Z.Q. Kou, N.L. Di, Z.H. Chenga, Appl. Phys. Lett. 85, 4690 (2004)

    Article  ADS  Google Scholar 

  16. Q.F. Zhan, J.H. Gao, Y.Q. Liang, N.L. Di, Z.H. Cheng, Phys. Rev. B 72, 024428 (2005)

    Article  ADS  Google Scholar 

  17. M.L. Tian, J.U. Wang, J. Kurtz, T.E. Mallouk, M.H.W. Chan, Nano Lett. 3, 919 (2003)

    Article  ADS  Google Scholar 

  18. S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan, Science 1, 2 (2001)

    Google Scholar 

  19. A.J. Yin, J. Li, W. Jian, A.J. Bennett, J.M. Xu, Appl. Phys. Lett. 79, 1039 (2001)

    Article  ADS  Google Scholar 

  20. M. Sun, G. Zangari, R.M. Metzger, IEEE Trans. Magn. 36, 3005 (2000)

    Article  ADS  Google Scholar 

  21. C. Preston, M. Moskovits, J. Phys. Chem. 97, 8495 (1993)

    Article  Google Scholar 

  22. W. Chen, S. Tang, M. Lu, Y. Du, J. Phys., Condens. Matter 15, 4623 (2003)

    Article  ADS  Google Scholar 

  23. A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J. Vac. Sci. Technol. A 17, 1428 (1999)

    Article  ADS  Google Scholar 

  24. W.D. Zhong, Ferromagnetism (Science Press, Beijing, 1998). (in Chinese)

    Google Scholar 

  25. M.L. Tian, J.U. Wang, J. Kurtz, T.E. Mallouk, M.H.W. Chan, Nano. Lett. 3, 919 (2003)

    Article  ADS  Google Scholar 

  26. J.N. Gerein, J.A. Haber, J. Phys. Chem. B 109, 17372 (2005)

    Article  Google Scholar 

  27. J. Zhang, G.A. Jones, T.H. Shen, S.E. Donnelly, J. Appl. Phys. 101, 054310 (2007)

    Article  ADS  Google Scholar 

  28. M. Darques, L. Piraux, A. Encinas, IEEE Trans. Magn. 41, 3415 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ramazani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramazani, A., Kashi, M.A., Isfahani, V.B. et al. The influence of crystallinity enhancement on the magnetic properties of ac electrodeposited Fe nanowires. Appl. Phys. A 98, 691–697 (2010). https://doi.org/10.1007/s00339-009-5463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5463-0

PACS

Navigation