Skip to main content
Log in

Micro-focussed XAFS spectroscopy to study Ni-bearing precipitates in the metal of corroded Zircaloy-2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work concerns an investigation of the local atomic environment of Ni-containing secondary phase precipitates (SPP) present in the metal-part of Zircaloy-2 cladding tubes. An unirradiated Zircaloy-2 and two specimens irradiated in a commercial nuclear power plant are characterized using μ-focussed synchrotron radiation, and by x-ray absorption fine structure (XAFS) spectroscopy. The patterns of Ni K-edge XANES and EXAFS of SPP in unirradiated and irradiated cladding are found different. Considering the fact that Ni-bearing SPP in the unirradiated samples are mainly Zintl phase Zr2(Fe, Ni) type, a detailed EXAFS analysis of near-neighbor Ni atoms has been made. The result of a curve fit for the first two shells shows that about 2 Ni(Fe) and 8 Zr atoms are coordinated at 2.68 and 2.77 Å, respectively, around a central Ni atom in the SPP. XANES data analysis provides total electronic density of states at the Fermi level of unirradiated Zr2(Fe, Ni). At the Ni K-edge EXAFS spectra of irradiated SPP, however, only a single scattering peak is observed demonstrating the structural disorder introduced by the neutron irradiation. The coordination number of the Ni neighboring shells is reduced markedly due to the formation of point and extended defects in the damaged SPP lattice. Dissolution of Ni from the SPP is also evident from the data. The results of this study provide a further basis for the description of both crystallographic and electronic structures of intermetallic second-phase precipitates found in Zr-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. MacEwen, J. Faber, A.P.L. Turner, Acta Metall. 31, 657 (1983)

    Article  Google Scholar 

  2. P. Hofmann, J. Nucl. Mater. 270, 194 (1999)

    Article  ADS  Google Scholar 

  3. A.R. Massih, M. Dahlbäck, M. Limbäck, T. Andersson, B. Lehtinen, Corros. Sci. 48, 1154 (2006)

    Article  Google Scholar 

  4. D. Charquet, R. Hahn, E. Ortlieb, J.P. Gros, J.F. Wadier, Zirconium in the nuclear industry, ASTM STP, vol. 1023 (1988), p. 405

  5. B. Cox, J. Nucl. Mater. 336, 331 (2005)

    Article  ADS  Google Scholar 

  6. A. Yilmazbayhan, A.T. Motta, R.J. Comstock, G.P. Sabol, B. Lai, Z. Cai, J. Nucl. Mater. 324, 6 (2004)

    Article  ADS  Google Scholar 

  7. D. Pecheur, F. Lefebvre, A.T. Motta, C. Lemaignan, D. Charquet, in: Zirconium in the Nuclear Industry, Tenth International Symposium, ASTM STP, vol. 1245, ed. by A.M. Garde, E.D. Bradley (1994), p. 687

  8. J.H. Baek, Y.H. Jeong, J. Nucl. Mater. 304, 107 (2002)

    Article  ADS  Google Scholar 

  9. M.Y. Yao, B.X. Zhou, Q. Li, W.Q. Liu, Y.L. Chu, J. Nucl. Mater. 350, 195 (2006)

    Article  ADS  Google Scholar 

  10. S.A. Nikulin, V.I. Goncharov, V.A. Markelov, V.N. Shishov, Zirconium in the Nuclear Industry, Eleventh Symposium, ASTM STP, vol. 1295 (1996), p. 695

  11. H.-G. Kim, J.-Y. Park, Y.-H. Jeong, J. Nucl. Mater. 345, 1 (2005)

    Article  ADS  Google Scholar 

  12. J.-Y. Park, S. Jo Yoo, B.-K. Choi, Y.H. Jeong, J. Nucl. Mater. 373, 343 (2008)

    Article  ADS  Google Scholar 

  13. R. Benaboud, P. Bouvier, J.-P. Petit, Y. Wouters, A. Galerie, J. Nucl. Mater. 360, 151 (2007)

    Article  ADS  Google Scholar 

  14. Y. Hatano, M. Sugisaki, K. Kitano, M. Hayashi, Zirconium in the Nuclear Industry, Twelfth International Symposium, ASTM STP, vol. 1354 (2000), p. 901; and references therein

  15. A.T. Motta, J. Nucl. Mater. 244, 227 (1997)

    Article  ADS  Google Scholar 

  16. S. Shimada, Y. Etoh, K. Tomida, J. Nucl. Mater. 248, 275 (1997)

    Article  ADS  Google Scholar 

  17. P. Vizcaino, A.D. Banchik, J.P. Abriata, Mater. Lett. 62, 491 (2008); and references therein

    Article  Google Scholar 

  18. C. Rodriguez, D.A. Barbiric, M.E. Pepe, J.A. Kovacs, J.A. Alonso, R.H. de Tendler, Intermetallics 10, 205 (2002); and references therein

    Article  Google Scholar 

  19. P. Vizcaino, A.D. Banchik, J.P. Abriata, J. Nucl. Mater. 336, 54 (2005)

    Article  ADS  Google Scholar 

  20. P.A. Lee, P.H. Citrin, P. Eisenberger, B.M. Kincaid, Rev. Mod. Phys. 53, 769 (1981)

    Article  ADS  Google Scholar 

  21. C. Degueldre, J. Raabe, G. Kuri, S. Abolhassani, Talanta 75, 402 (2008)

    Article  Google Scholar 

  22. S. Abolhassani, D. Gavillet, F. Groeschel, P. Jourdain, H.U. Zwicky, in: International Topic Meeting on LWR Fuel Performance, Park City, UT, April 10–13 (2000), p. 470

  23. C.H. Booth, F. Bridges, Phys. Scr. T 115, 202 (2005)

    Article  Google Scholar 

  24. J.J. Rehr, J.M.d. Leon, S.I. Zabinsky, R.C. Albers, J. Am. Chem. Soc. 113, 5135 (1991); we have used the version 8.20

    Article  Google Scholar 

  25. M.E. Kirkpatrick, D.M. Bailey, J.F. Smith, Acta Cryst. 15, 252 (1962)

    Article  Google Scholar 

  26. E.E. Havinga, H. Damsma, P. Hokkelling, J. Less-Common Met. 27, 169 (1972)

    Article  Google Scholar 

  27. National Institute of Standards and Technology; NIST/FIZ FindIt-code for Inorganic Crystal Structure Database (ICSD); We have used ICSD # 103712 and ICSD # 105479 for Zr2Fe and Zr2Ni, respectively

  28. J.A. Alonso, L.A. Girifalco, Phys. Rev. B 19, 3889 (1979)

    Article  ADS  Google Scholar 

  29. R. Frahm, R. Haensel, P. Rabe, J. Phys. F: Met. Phys. 14, 1029 (1984)

    Article  ADS  Google Scholar 

  30. R. Visnov, F. Ducastelle, G. Treglia, J. Phys. F: Met. Phys. 12, 441 (1982)

    Article  ADS  Google Scholar 

  31. A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson, Phys. Rev. B 58, 7565 (1998)

    Article  ADS  Google Scholar 

  32. A.L. Ankudinov, J.J. Rehr, Phys. Rev. B 62, 2437 (2000)

    Article  ADS  Google Scholar 

  33. R. Mittal, S.L. Chaplot, K.R. Rao, P. Raj, Physica B 222, 233 (1996); and references therein

    Article  ADS  Google Scholar 

  34. H.G. Salunke, G.P. Das, P. Raj, V.C. Sahani, S.K. Dhar, Physica C 226, 385 (1994)

    Article  ADS  Google Scholar 

  35. R. Mittal, S.L. Chaplot, H.G. Salunke, G.P. Das, P. Raj, A. Sathyamoorthy, K. Shashikala, S.K. Dhar, Physica C 320, 239 (1999)

    Article  ADS  Google Scholar 

  36. J.C. de Lima, D. Raoux, J.M. Tonnerre, D. Udron, K.D. Machado, T.A. Grandi, C.E.M. de Campos, T.I. Morrison, Phys. Rev. B 67, 094210 (2003)

    Article  ADS  Google Scholar 

  37. A.T. Motta, C. Lemaignan, in Ordering and Disordering in Alloys, ed. by A.R. Yavari (Elsevier Applied Science, London, 1992), p. 255

    Google Scholar 

  38. A.T. Motta, C. Lemaignan, J. Nucl. Mater. 195, 277 (1992)

    Article  ADS  Google Scholar 

  39. Y. Etoh, S. Shimada, J. Nucl. Mater. 200, 59 (1993)

    Article  ADS  Google Scholar 

  40. C.S. Moura, A.T. Motta, N.Q. Lam, L. Amaral, Nucl. Instrum. Methods Phys. Res. B 175–177, 526 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuri, G., Degueldre, C., Bertsch, J. et al. Micro-focussed XAFS spectroscopy to study Ni-bearing precipitates in the metal of corroded Zircaloy-2. Appl. Phys. A 98, 625–633 (2010). https://doi.org/10.1007/s00339-009-5456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5456-z

PACS

Navigation