Skip to main content
Log in

Theoretic analysis on electric conductance of nano-wire transistors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By employing the commercial software nanoMos and Vienna ab Initio Simulation Package (VASP), the performance of nano-wire field-effect transistors is investigated. In this paper, the Density-Gradient Model (DG Model) is used to describe the carrier transport behavior of the nano-wire transistor under quantum effects. The analysis of the drain current with respect to channel length, body dielectric constant and gate contact work function is presented. In addition, Fermi energy and DOS (Density of State) are introduced to explore the relative stability of carrier transport and electrical conductance for the silicon crystal with dopants. Finally, how the roughness of the surface of the silicon-based crystal is affected by dopants and their allocation can be illuminated by a few broken bonds between atoms near the skin of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.L. Yang, D.H. Lee, H.Y. Chen, C.Y. Chang, S.D. Liu, C.C. Huang, T.X. Chung, H.W. Chen, C.C. Huang, Y.C. Yeo, Y. Li, J.W. Lee, P. Chen, M.S. Liang, C. Hu, 5 nm-gate nanowire FinFET, in Digest of Technical Papers—Symposium on VLSI Technology, 2004 Symposium on VLSI Technology—Digest of Technical Papers (2004), pp. 196–197

  2. M.C. McAlpine, R.S. Friedman, S. Jin, K. Lin, W.U. Wang, C.M. Lieber, High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 3, 1531–1535 (2003)

    Article  ADS  Google Scholar 

  3. Z. Li, Y. Chen, X. Li, T.I. Kamins, K. Nauka, R.S. Williams, Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 4, 245–247 (2004)

    Article  ADS  Google Scholar 

  4. S.M. Koo, Q. Li, M.D. Edelstein, C.A. Richter, E.M. Vogel, Enhanced channel modulation in dual-gated silicon nanowire transistors. Nano Lett. 5(12), 2519–2523 (2005)

    Article  ADS  Google Scholar 

  5. S.A. Hareland, S. Krishnamurthy, S. Jallepalli, C.F. Yeap, K. Hasnat, A.F. Tasch, C.M. Maziar, A computationally efficient model for inversion layer quantization effects in deep submicron N-channel MOSFET’s. IEEE Trans. Electron Devices 43, 90–96 (1996)

    Article  ADS  Google Scholar 

  6. A.S. Spinelli, A. Benvenuti, A. Pacelli, Self-consistent 2-D model for quantum effects in n-MOS transistors. IEEE Trans. Electron Devices 45, 1342–1349 (1998)

    Article  ADS  Google Scholar 

  7. A. Asenov, G. Slavcheva, A.R. Brown, J.H. Davies, S. Saini, Quantum corrections in the simulation of decanano MOSFETs. IEEE Trans. Electron Devices 48, 722–729 (2001)

    Article  ADS  Google Scholar 

  8. A.R. Brown, A. Martinez, N. Seoane, A. Asenov, Comparison of density gradient and NEGF for 3D simulation of a nanowire MOSFET, in Proceedings of the 2009 Spanish Conference on Electron Devices (2009), pp. 140–143

  9. C. Nguyen, C. Jungemann, B. Meinerzhagen, Modeling of size quantization in strained Si-nMOSFETs with the improved modified local density approximation, in NSTI Nanotechnology Conference and Trade Show—NSTI Nanotech 2005 Technical Proceedings (2005), pp. 33–36

  10. A.A. Ahmadain, K.P. Roenker, K.A. Tomko, A study of the performance of ballistic nanoscale MOSFETS using classical and quantum ballistic transport models, in 2006 6th IEEE Conference on Nanotechnology, IEEE-NANO, vol. 1 (2006), pp. 16–19

  11. V. Dragica, Drift-Diffusion Model, Mobility Modeling (2006)

  12. P. Carruthers, F. Zachariasen, Quantum collision theory with phase–space distributions. Rev. Mod. Phys. 55, 245–285 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  MATH  ADS  Google Scholar 

  14. H. Tsuchiya, B. Winstead, U. Ravaioli, Quantum potential approaches for nano-scale device simulation. VLSI Design 13, 335–340 (2001)

    Article  Google Scholar 

  15. A. Asenov, A.R. Brown, J.R. Watling, Quantum corrections in the simulation of decanano MOSFETs. Solid-State Electron. 47, 1141–1145 (2003)

    Article  ADS  Google Scholar 

  16. B. Winstead, H. Tsuchiya, U. Ravaioli, Comparison of quantum corrections for Monte Carlo simulation. J. Comput. Electron. 1, 201–207 (2002)

    Article  Google Scholar 

  17. H. Tsuchiya, T. Miyoshi, Quantum transport modeling of ultrasmall semiconductor devices. IEICE Trans. Electron. E82-C(6), 880–887 (1999)

    Google Scholar 

  18. J.R. Zhou, D.K. Ferry, Modeling of quantum effects in ultrasmall HEMT devices. IEEE Trans. Electron Devices 40(2), 421–427 (1993)

    Article  ADS  Google Scholar 

  19. M.G. Ancona, G.J. Iafrate, Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39, 9536–9540 (1989)

    Article  ADS  Google Scholar 

  20. C.S. Rafferty, B. Biegel, Z. Yu, M.G. Ancona, J. Bude, R.W. Dutton, Multi-dimensional quantum effect simulation using a density gradient model and script-level programming techniques, in Proceedings of IEEE SISPAD (1998), pp. 137–140

  21. S. Datta, The non-equilibrium green’s function (NEGF) formalism: an elementary introduction, in Technical Digest International Electron Devices Meeting (2002), pp. 703–706

  22. S. Datta, Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.-C. Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, NC., Chiang, YR. & Hsu, SL. Theoretic analysis on electric conductance of nano-wire transistors. Appl. Phys. A 98, 135 (2010). https://doi.org/10.1007/s00339-009-5453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-009-5453-2

PACS

Navigation