Skip to main content
Log in

Catalyst-free highly vertically aligned ZnO nanoneedle arrays grown by plasma-assisted molecular beam epitaxy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work describes the growth of highly vertically aligned ZnO nanoneedle arrays on wafer-scale catalyst-free c-plane sapphire substrates by plasma-assisted molecular beam epitaxy under high Zn flux conditions. The photoluminescence spectrum of the as-grown samples reveals strong free exciton emissions and donor-bound exciton emissions with an excellent full width at half maximum (FWHM) of 1.4 meV. The field emission of highly vertically aligned ZnO nanoneedle arrays closely follows the Fowler–Nordheim theory. The turn-on electric field was about 5.9 V/µm with a field enhancement factor β of around 793.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)

    Article  Google Scholar 

  2. Y.Y. Wu, R. Fan, P.D. Yang, Nano Lett. 2, 83 (2002)

    Article  ADS  Google Scholar 

  3. E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, Z.L. Wang, Appl. Phys. Lett. 81, 1869 (2002)

    Article  ADS  Google Scholar 

  4. Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  5. V.T. Binh, S.T. Purcell, Appl. Surf. Sci. 111, 157 (1997)

    Article  ADS  Google Scholar 

  6. Y. Saito, S. Uemura, Carbon 38, 169 (2000)

    Article  Google Scholar 

  7. Z.K. Tang, G.K. Wong, P. Yu, M. Kawasaki, A. Ohmoto, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998)

    Article  ADS  Google Scholar 

  8. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, M.Y. Shen, T. Goto, Appl. Phys. Lett. 73, 1038 (1998)

    Article  ADS  Google Scholar 

  9. Q. Zhao, H.Z. Zhang, Y.W. Zhu, S.Q. Feng, X.C. Sun, J. Xu, D.P. Yu, Appl. Phys. Lett. 86, 203115 (2005)

    Article  ADS  Google Scholar 

  10. W.I. Park, G.C. Yi, M. Kim, S.J. Pennycook, Adv. Mater. 14, 1841 (2002)

    Article  Google Scholar 

  11. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, D.P. Yu, Appl. Phys. Lett. 83, 144 (2003)

    Article  ADS  Google Scholar 

  12. B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, D. Yu, Nanotechnology 16, 2567 (2005)

    Article  ADS  Google Scholar 

  13. Z. Zhang, H. Yuan, J. Zhou, D. Liu, S. Luo, Y. Miao, Y. Gao, J. Wang, L. Liu, L. Song, Y. Xiang, X. Zhao, W. Zhou, S. Xie, J. Phys. Chem. B 110, 8566 (2006)

    Article  Google Scholar 

  14. R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Y.K. Tseng, S.C. Kung, Appl. Phys. Lett. 87, 013110 (2005)

    Article  ADS  Google Scholar 

  15. S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N.W. Emanetoglu, Y. Lu, IEEE Trans. Nanotechnol. 2, 50 (2003)

    Article  ADS  Google Scholar 

  16. C.L. Hsu, S.J. Chang, H.C. Hung, Y.R. Lin, C.J. Huang, Y.K. Tseng, I.C. Chen, IEEE Trans. Nanotechnol. 4, 649 (2005)

    Article  ADS  Google Scholar 

  17. T.F. Chung, L.B. Luo, Z.B. He, Y.H. Leung, I. Shafiq, Z.Q. Yao, S.T. Lee, Appl. Phys. Lett. 91, 233112 (2007)

    Article  ADS  Google Scholar 

  18. Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Appl. Phys. Lett. 81, 3046 (2002)

    Article  ADS  Google Scholar 

  19. L.C. Tien, D.P. Norton, S.J. Pearton, H.T. Wang, F. Ren, Appl. Surf. Sci. 253, 4620 (2007)

    Article  ADS  Google Scholar 

  20. H.J. Ko, T. Yao, Y. Chen, S.K. Hong, J. Appl. Phys. 92, 4354 (2002)

    Article  ADS  Google Scholar 

  21. A. Setiawan, Z. Vashaei, M.W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga, H.J. Ko, J. Appl. Phys. 96, 3763 (2004)

    Article  ADS  Google Scholar 

  22. J.Q. Hu, Q. Li, N.B. Wong, C.S. Lee, S.T. Lee, Chem. Mater. 14, 1216 (2002)

    Article  Google Scholar 

  23. Z.L. Wang, X.Y. Kong, Y. Ding, P.X. Gao, W.L. Hughes, R.S. Yang, Y. Zhang, Adv. Funct. Mater. 14, 943 (2004)

    Article  Google Scholar 

  24. C. Jagadish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures Processing, Properties and Applications (Elsevier, Amsterdam, 2006)

    Google Scholar 

  25. S. Müller, D. Stichtenoth, M. Uhrmacher, H. Hofsäss, C. Ronning, J. Röder, Appl. Phys. Lett. 90, 012107 (2007)

    Article  ADS  Google Scholar 

  26. H. Kato, M. Sano, K. Miyamoto, T. Yao, Jpn. J. Appl. Phys. 42, 2241 (2003)

    Article  ADS  Google Scholar 

  27. J.C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N.L. Rupesinghe, W.K. Hsu, N. Grobert, H. Terrones, G.A. Amaratunga, Nano Lett. 2, 1191 (2002)

    Article  ADS  Google Scholar 

  28. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Appl. Phys. Lett. 81, 3648 (2002)

    Article  ADS  Google Scholar 

  29. T. Minami, T. Miyata, T. Yamamoto, Surf. Coat. Technol. 108–109, 583 (1998)

    Article  Google Scholar 

  30. J.M. Bonard, J.P. Salvetat, T. Stöckli, L. Forró, A. Châtelain, Appl. Phys. A 69, 245 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.S., Yang, C.S., Chen, P.I. et al. Catalyst-free highly vertically aligned ZnO nanoneedle arrays grown by plasma-assisted molecular beam epitaxy. Appl. Phys. A 97, 553–557 (2009). https://doi.org/10.1007/s00339-009-5436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5436-3

PACS

Navigation