Skip to main content
Log in

Laser physical vapor deposition of nanocrystalline dots using nanopore filters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline dots of n-type Bi2Te2.7Se0.3 thermoelectric compound and of silicon were deposited by laser physical vapor deposition using polycarbonate or alumina nanopore filters as templates. The films were characterized by scanning electron microscopy and transmission electron microscopy. Using a pore size of 0.2 μm in the nanopore filters, a uniform distribution of crystallites with size 3 to 4 nm and separated from each other was observed by high-resolution transmission electron microscopy. The dots were all single crystals, as seen by the resolved crystal lattice planes. The compositions of the crystallites, of both the thermoelectric compound and silicon, were analyzed by energy dispersive X-ray analysis. The composition of the thermoelectric compound nanocrystals differed significantly from that of the bulk target, likely due to vapor pressure differences of the constituent elements. The results are promising for synthesis of nanocrystalline dots with controlled size but compositional control is a different task that is not carried out. The observations illustrate that nonstoichiometry is a result of difference in the vapor pressure of different elements in the compound. The method of synthesis is found to be suitable for deposition of quantum dots below certain size determined by the size of the pores in the porous filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Alivisatos, Science 271, 933 (1996)

    Article  ADS  Google Scholar 

  2. T.R. Thurston, J.P. Wilcoxon, J. Phys. Chem. B 103, 11 (1999)

    Article  Google Scholar 

  3. J.P. Wilcoxon, G.A. Samura, Appl. Phys. Lett. 74, 3164 (1999)

    Article  ADS  Google Scholar 

  4. A.P. Alivistos, Pure Appl. Chem. 72, 3 (2000)

    Article  Google Scholar 

  5. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  ADS  Google Scholar 

  6. A.L. Efros, M. Rosen, Ann. Rev. Mater. Sci. 30, 475 (2000)

    Article  Google Scholar 

  7. G.Y. Tseng, J.C. Ellenboge, Science 294, 1293 (2001)

    Article  Google Scholar 

  8. T.C. Harmon, P.J. Taylor, D.L. Spears, M.P. Walsch, J. Electron. Mater. 29, L1 (2000)

    Article  ADS  Google Scholar 

  9. T.C. Harmon, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002)

    Article  ADS  Google Scholar 

  10. O. Rabin, Y.M. Lin, M.S. Dresselhaus, Appl. Phys. Lett. 79, 81 (2001)

    Article  ADS  Google Scholar 

  11. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Science 320, 634 (2008)

    Article  ADS  Google Scholar 

  12. C. Kresge, M. Leonowicz, W. Roth, C. Vartuli, J. Beck, Nature 359, 710 (1992)

    Article  ADS  Google Scholar 

  13. C.B. Murray, C.R. Kagan, M.G. Bawendi, Science 270, 1335 (1995)

    Article  ADS  Google Scholar 

  14. M. Grundmann, D. Bimberg, Jpn. J. Appl. Phys. 36, 4181 (1997)

    Article  ADS  Google Scholar 

  15. S. Tiwari, F. Rana, K. Chan, L. Shi, H. Hanafi, Appl. Phys. Lett. 69, 1232 (1996)

    Article  ADS  Google Scholar 

  16. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113 (2001)

    Article  Google Scholar 

  17. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  18. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.S. Bawendi, J. Phys. Chem. B 101, 9463 (1997)

    Article  Google Scholar 

  19. D.J. Norris, A.L. Efros, M. Rosen, M.G. Bawendi, Phys. Rev. 53B, 16347 (1996)

    ADS  Google Scholar 

  20. M. Hines, P.G. Sionnest, J. Phys. Chem. 100, 468 (1996)

    Article  Google Scholar 

  21. A. Meldrum, R.F. HaglundJr. , L.A. Boatner, C.W. White, Adv. Mater. 13, 1431 (2001)

    Article  Google Scholar 

  22. A. Huczko, Appl. Phys. A 70, 365 (2000)

    Article  ADS  Google Scholar 

  23. C. Martin, Chem. Mater. 8, 1739 (1996)

    Article  Google Scholar 

  24. H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T.N. Rao, A. Fujishima, Adv. Mater. 13, 247 (2001)

    Article  Google Scholar 

  25. T.M. Chen, F.M. Pan, J.Y. Hung, L. Chang, S.C. Wu, C.F. Chen, J. Electrochem. Soc. 154, D215 (2007)

    Article  Google Scholar 

  26. W.J. Hui, P. Lin, Z.J. Ping, M.Y. Feng, Z.J. Min, B.X. Mao, Chin. Phys. Lett. 17, 451 (2000)

    Article  Google Scholar 

  27. T. Shimizu, S. Senz, S. Shingubara, U. Gosele, Appl. Phys. A 87, 607 (2007)

    Article  ADS  Google Scholar 

  28. R.S. Makala, K. Jagannadham, B.C. Sales, J. Appl. Phys. 94, 3907 (2003)

    Article  ADS  Google Scholar 

  29. O. Kubaschewski, E.L.L. Evans, C.B. Alcock, Metallurgical Thermochemistry, 4th edn. (Pergamon, Elmsford, 1967), p. 409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannadham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagannadham, K., Howe, J. & Allard, L.F. Laser physical vapor deposition of nanocrystalline dots using nanopore filters. Appl. Phys. A 98, 285–292 (2010). https://doi.org/10.1007/s00339-009-5432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5432-7

PACS

Navigation