Skip to main content
Log in

Electrical study and dielectric relaxation behavior in nanocrystalline Ce0.85Gd0.15O2−δ material at intermediate temperatures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The nanocrystalline material of 15 mol% Gd-doped ceria (Ce0.85Gd0.15O2−δ ) was prepared by citrate auto ignition method. The electrical study and dielectric relaxation technique were applied to investigate the ionic transport process in this nanocrystalline material with an average grain size of 13 nm and the dynamic relaxation parameters are deduced in the temperature range of 300–600°C. The ionic transference number in the material is found to be 0.85 at 500°C at ambient conditions. The oxygen ionic conduction in the nanocrystalline Ce0.85Gd0.15O2−δ material follows the hopping mechanism. The grain boundary relaxation is found to be associated with migration of charge carriers. The frequency spectra of modulus M″ exhibited a dielectric relaxation peak corresponding to defect associates \((\mathrm{Gd}\mbox{-}\mathrm{V}_{\mathrm{o}}^{_{_{{\blacksquare\,\blacksquare}}}})^{_{_{{\blacksquare}}}}\). The material exhibits very low values of migration energy and association energy of the oxygen vacancies in the long-range motion, i.e., 0.84 and 0.07 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Inaba, H. Tagawa, Solid State Ionics 83, 1 (1996)

    Article  Google Scholar 

  2. R. Gerhardt-Anderson, A.S. Nowick, Solid State Ionics 5, 547 (1981)

    Article  Google Scholar 

  3. J.A. Kilner, Solid State Ionics 8, 201 (1983)

    Article  Google Scholar 

  4. M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129, 63 (2000)

    Article  Google Scholar 

  5. R. Gerhardt, A.S. Nowick, J. Am. Ceram. Soc. 69, 641 (1986)

    Article  Google Scholar 

  6. R. Gerhardt, A.S. Nowick, M.E. Mochel, I. Dumler, J. Am. Ceram. Soc. 69, 647 (1986)

    Article  Google Scholar 

  7. D.Y. Wang, A.S. Nowick, J. Solid State Chem. 35, 325 (1980)

    Article  ADS  Google Scholar 

  8. M.J. Verkerk, B.J. Middelhuis, A.J. Burggraaf, Solid State Ionics 6, 159 (1982)

    Article  Google Scholar 

  9. D. Vaben, D. Stover, L.G.J. de Haart, M. Cappadonia, Br. Ceram. Proc. 56, 35 (1996)

    Google Scholar 

  10. E. Rossinyol, E. Pellicer, A. Prim, S. Estrade, J. Arbiol, F. Peiro, A. Cornet, J.R. Morante, J. Nanopart. Res. 10, 369 (2008)

    Article  Google Scholar 

  11. X. Sha, Z. Lu, X. Huang, J. Miao, Z. Ding, X. Xin, W. Su, J. Alloys Compd. 428, 59 (2007)

    Article  Google Scholar 

  12. T. Mori, T. Kobayashi, Y. Wang, J. Drennan, T. Nishimura, J.-G. Li, H. Kobayashi, J. Am. Ceram. Soc. 88, 1981 (2005)

    Article  Google Scholar 

  13. C. Krishnamoorthy, K. Sethupathi, V. Sankaranarayanan, in Proceedings of DAE Solid State Symposium (2004), p. 298

  14. J.B. Wagner, C. Wagner, J. Chem. Phys. 26, 1597 (1957)

    Article  ADS  Google Scholar 

  15. Y.M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller, J.Y. Ying, J. Electroceram. 1(1), 7–14 (1997)

    Article  Google Scholar 

  16. A. Kumar, I. Manna, Physica B 403, 2298 (2008)

    Article  ADS  Google Scholar 

  17. K. Funke, Solid State Ionics 94, 27 (1997)

    Article  Google Scholar 

  18. J.C. Dyre, J. Appl. Phys. 64, 2456 (1988)

    Article  ADS  Google Scholar 

  19. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  20. D.P. Almond, A.R. West, Solid State Ionics 9–10, 277 (1983)

    Article  Google Scholar 

  21. L.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125 (1976)

    Article  Google Scholar 

  22. A.R. Von Hippel, Dielectrics and Waves (Wiley, New York, 1954) (Chap. II)

    Google Scholar 

  23. W.D. Kingery, Introduction to Ceramics (Wiley, New York, 1976)

    Google Scholar 

  24. A. Pimenov, J. Ullrich, P. Lunkenheimer, A. Loidl, C.H. Ruscher, Solid State Ionics 109, 111 (1998)

    Article  Google Scholar 

  25. E. Barsoukuv, J. Ross Donald, Impedance Spectroscopy Theory, Experiment and Applications (Wiley, New York, 2005)

    Book  Google Scholar 

  26. P. Sarkar, P.S. Nicholson, J. Am. Ceram. Soc. 72, 1447 (1989)

    Article  Google Scholar 

  27. P. Sarkar, P.S. Nicholson, Solid State Ionics 21, 49 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Baral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar Baral, A., Sankaranarayanan, V. Electrical study and dielectric relaxation behavior in nanocrystalline Ce0.85Gd0.15O2−δ material at intermediate temperatures. Appl. Phys. A 98, 367–373 (2010). https://doi.org/10.1007/s00339-009-5391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5391-z

PACS

Navigation