Skip to main content
Log in

Self-assembly of a functional electronic circuit directed by capillary interactions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the use of capillary interactions to drive the self-assembly of an electronic circuit based on mesoscale building blocks. The specific target structure is a linear heterotetramer comprising non-identical millimetre-scale cubic blocks that, following assembly, forms a functioning astable multivibrator circuit. Importantly, the self-assembly process is designed to be unconstrained, i.e., each of the blocks are free to move in any way during assembly. To this end, solder droplets are selectively patterned on the block faces. On contact, capillary interactions between shape complimentary solder patterns on the blocks cause the molten solder droplets to coalesce and the blocks to self-assemble. In this way, capillary forces direct the alignment, registration, linking and electrical interconnection of each block during the assembly process. This demonstration of mesoscale self-assembly mediated by capillary interactions illustrates that the application of unconventional assembly paradigms to complex structure fabrication is feasible and that these approaches may yet yield viable strategies for fabrication of highly integrated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.B. Bowden, M. Weck, I.S. Choi, G.M. Whitesides, Acc. Chem. Res. 34, 231 (2001)

    Article  Google Scholar 

  2. M. Madou, Fundamentals of Microfabrication (CRC Press, New York, 1997)

    Google Scholar 

  3. C.J. Morris, S.A. Stauth, P.A. Parviz, IEEE Trans. Adv. Packag. 28, 600 (2005)

    Article  Google Scholar 

  4. H.-J.J. Yeh, J.S. Smith, IEEE Photon. Technol. Lett. 6, 706 (1994)

    Article  ADS  Google Scholar 

  5. C.S. Lee, H. Lee, R.M. Westervelt, Appl. Phys. Lett. 79, 3308 (2001)

    Article  ADS  Google Scholar 

  6. B.A. Grzybowski, A. Winkleman, J.A. Wiles, Y. Brumer, G.M. Whitesides, Nat. Mater. 2, 241 (2003)

    Article  ADS  Google Scholar 

  7. A. O’Riordan, P. Delaney, G. Redmond, Nano Lett. 4, 761 (2004)

    Article  ADS  Google Scholar 

  8. T.D. Clark, J. Tien, D.C. Duffy, K.E. Paul, G.M. Whitesides, J. Am. Chem. Soc. 123, 7677 (2001)

    Article  Google Scholar 

  9. U. Srinivasan, D. Liepmann, R.T. Howe, J. Microelectromech. Syst. 10, 17 (2001)

    Article  Google Scholar 

  10. J. Fang, K.F. Böhringer, J. Micromech. Microeng. 16, 721 (2006)

    Article  ADS  Google Scholar 

  11. N. Bowden, A. Terfort, J. Carbeck, G.M. Whitesides, Science 276, 233 (1997)

    Article  Google Scholar 

  12. A. Terfort, N. Bowden, G.M. Whitesides, Nature 386, 162 (1997)

    Article  ADS  Google Scholar 

  13. H.O. Jacobs, A.R. Tao, A. Schwartz, D.H. Gracias, G.M. Whitesides, Science 296, 323 (2002)

    Article  ADS  Google Scholar 

  14. S.A. Stauth, B.A. Parviz, PNAS 103, 13922 (2006)

    Article  ADS  Google Scholar 

  15. W. Zheng, P. Buhlmann, H.O. Jacobs, PNAS 101, 12814 (2004)

    Article  ADS  Google Scholar 

  16. W. Zheng, H.O. Jacobs, Adv. Funct. Mater. 15, 732 (2005)

    Article  Google Scholar 

  17. D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides, Science 289, 1170 (2000)

    Article  ADS  Google Scholar 

  18. A.H. Cannon, Y. Hua, C.L. Henderson, W.P. King, J. Micromech. Microeng. 15, 2172 (2005)

    Article  ADS  Google Scholar 

  19. M. Boncheva, D.H. Gracias, H.O. Jacobs, G.M. Whitesides, PNAS 99, 4937 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Redmond.

Electronic Supplementary Material

Below is the link to the electronic supplementary material video object. (0.98 MB)

Below is the link to the electronic supplementary material video object. (707 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, K., O’Riordan, A. & Redmond, G. Self-assembly of a functional electronic circuit directed by capillary interactions. Appl. Phys. A 98, 203 (2010). https://doi.org/10.1007/s00339-009-5374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-009-5374-0

PACS

Navigation