Skip to main content
Log in

(100) MgAl2O4 as a lattice-matched substrate for the epitaxial thin film deposition of the relaxor ferroelectric PMN-PT

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The (100) surface of MgAl2O4 is evaluated as a substrate for the thin film deposition of the relaxor ferroelectric PbMg1/3Nb2/3O3(65%)–PbTiO3(35%). With a lattice mismatch of less than 0.5%, this film-substrate combination presents a geometrical template for growth that is far superior to that formed with other commercially available oxide substrates. Films were deposited using the pulsed laser deposition technique and were characterized in terms of their crystallographic, microstructural, and dielectric properties. From a crystallographic perspective the films show excellent cube-on-cube epitaxy, are highly oriented, and show no evidence of the frequently observed parasitic pyrochlore phase. With the exception of a few faceted surface structures, the film’s microstructure is single-crystal-like, exhibiting a sharp film-substrate interface, a smooth top surface, and no discernable granularity. The dielectric response shows the frequency-dependent diffuse phase transition characteristic of a relaxor material, but with less frequency dispersion and a smaller maximum in the dielectric constant. Taken together, the results suggest that the (100) MgAl2O4 substrate could prove to be an effective substrate material, not only for the PbMg1/3Nb2/3O3(65%)–PbTiO3(35%) system, but also for a number of other important lattice-matched ferroelectric, relaxor, and ferroelectric superlattice systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Zhang, B. Jiang, W. Cao, Appl. Phys. Lett. 82, 3737 (2003)

    Article  ADS  Google Scholar 

  2. R. Zhang, B. Jiang, W. Cao, Appl. Phys. Lett. 82, 788 (2003)

    ADS  Google Scholar 

  3. D. O’Neill, G. Catalan, F. Porras, R.M. Bowman, J.M. Gregg, J. Mater. Sci. Mater. Electron 9, 199 (1998)

    Google Scholar 

  4. J.F. Scott, C.A. Paz de Araujo, Science 246, 1400 (1989)

    Article  ADS  Google Scholar 

  5. M. Tyunina, J. Levoska, A. Sternberg, S. Leppävuori, J. Appl. Phys. 86, 5179 (1999)

    Article  ADS  Google Scholar 

  6. G.-B. Kim, W.-S. Chong, T.-K. Kwon, K. Hohkawa, C.-U. Hong, N.-K. Kim, Jpn. J. Appl. Phys. 44, 2868 (2005)

    Article  ADS  Google Scholar 

  7. L. Lebrun, G. Sebald, B. Guiffard, C. Richard, D. Guyomar, E. Pleska, Ultrasonics 42(46), 501 (2004)

    Article  Google Scholar 

  8. Y. Lu, B. Gaynor, C. Hsu, G. Jin, M. Cronin-Golomb, F. Wang, J. Zhao, S.-Q. Wang, P. Yip, A.J. Drehman, Appl. Phys. Lett. 74, 3038 (1999)

    Article  ADS  Google Scholar 

  9. K.H. Choi, J.H. Ho, H.J. Kim, J.Y. Kim, S.-G. Lee, S.M. Rhim, in Proc. of IEEE Ultrasonics Symp., vol. 1 (2001), p. 161

  10. Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 87, 103502 (2005)

    Article  ADS  Google Scholar 

  11. X.L. Zhong, L. Lu, M.O. Lai, Surf. Coat. Technol. 198, 400 (2005)

    Article  Google Scholar 

  12. J.-K. Lee, H.-S. Jung, D.-W. Kim, C.-H. Kim, K.S. Hong, J. Mater. Res. 17, 1030 (2002)

    Article  ADS  Google Scholar 

  13. X.Y. Chen, J. Wang, K.H. Wong, C.L. Mak, G.X. Chen, J.M. Liu, M. Wang, Z.G. Liu, Appl. Phys. A 81, 1145 (2005)

    Article  ADS  Google Scholar 

  14. J. Wang, K.H. Wong, H.L.W. Chan, C.L. Choy, Appl. Phys. A 79, 551 (2004)

    Article  ADS  Google Scholar 

  15. J.-P. Maria, W. Hackenberger, S. Trolier-McKinstry, J. Appl. Phys. 84, 5147 (1998)

    Article  ADS  Google Scholar 

  16. T.R. Shrout, H. Halliyal, Am. Ceram. Soc. Bull. 66, 704 (1987)

    Google Scholar 

  17. S.D. Bu, M.K. Lee, C.B. Eom, W. Tian, X.Q. Pan, S.K. Streiffer, J.J. Krajewski, Appl. Phys. Lett. 79, 3482 (2001)

    Article  ADS  Google Scholar 

  18. K. Wasa, I. Kanno, T. Suzuki, S.H. Seo, D.Y. Noh, H. Okino, T. Yamamoto, Integr. Ferroelectr. 70, 131 (2005)

    Article  Google Scholar 

  19. K. Wasa, I. Kanno, S.H. Seo, D.Y. Noh, T. Matsunaga, H. Okino, T. Yamamoto, Ferroelectrics 328, 69 (2005)

    Article  Google Scholar 

  20. J.H. Park, S. Trolier-McKinstry, J. Mater. Res. 16, 268 (2001)

    Article  ADS  Google Scholar 

  21. V. Nagarajan, C.S. Ganpule, B. Nagaraj, S. Aggarwal, S.P. Alpay, A.L. Roytburd, E.D. Williams, R. Ramesh, Appl. Phys. Lett. 75, 4183 (1999)

    Article  ADS  Google Scholar 

  22. S. Yokoyama, S. Okamoto, H. Funakubo, T. Iijima, K. Saito, H. Okino, T. Yamamoto, K. Nishida, T. Katoda, J. Sakai, J. Appl. Phys. 100, 054110 (2006)

    Article  ADS  Google Scholar 

  23. Y. Wang, Y.L. Cheng, K.C. Cheng, H.L.W. Chan, C.L. Choy, Z.R. Liu, Appl. Phys. Lett. 85, 1580 (2004)

    Article  ADS  Google Scholar 

  24. A. Purice, G. Dinescu, N. Scarisoreanu, P. Verardi, F. Craciun, C. Galassi, M. Dinescu, J. Eur. Ceram. Soc. 26, 2937 (2006)

    Article  Google Scholar 

  25. V. Nagarajan, S.P. Alpay, C.S. Ganpule, B.K. Nagaraj, S. Aggarwal, E.D. Williams, A.L. Roytburd, R. Ramesh, Appl. Phys. Lett. 77, 438 (2000)

    Article  ADS  Google Scholar 

  26. M. Tyunina, J. Levoska, Phys. Rev. B 63, 224102 (2001)

    Article  ADS  Google Scholar 

  27. J. Levoska, M. Tyunina, A. Sternberg, S. Leppävuori, Appl. Phys. A 70, 269 (2000)

    Article  ADS  Google Scholar 

  28. J. Han, W. Cao, Phys. Rev. B 68, 134102 (2003)

    Article  ADS  Google Scholar 

  29. M. Lippmaa, K. Takahashi, S. Ohashi, N. Nakagawa, T. Sato, M. Iwatsuki, H. Koinuma, M. Kawasaki, Ferroelectrics 224, 373 (1999)

    Article  Google Scholar 

  30. D.S. Deak, F. Silly, D.T. Newell, M.R. Castell, J. Phys. Chem. B 110, 9246 (2006)

    Article  Google Scholar 

  31. S. Neretina, R.A. Hughes, G.A. Devenyi, N.V. Sochinskii, J.S. Preston, P. Mascher, Appl. Surf. Sci. 255, 5674 (2009). doi:10.1016/j.apsusc.2008.12.050

    Article  ADS  Google Scholar 

  32. C. Duriez, C. Chapon, C.R. Henry, J.M. Rickard, Surf. Sci. 230, 123 (1990)

    Article  ADS  Google Scholar 

  33. L.D. Madsen, R. Charavel, J. Birch, E.B. Svedburg, J. Cryst. Growth 209, 91 (2000)

    Article  ADS  Google Scholar 

  34. Y. Shao, R.A. Hughes, A. Dabkowski, G. Radtke, W.H. Gong, J.S. Preston, G.A. Botton, Appl. Phys. Lett. 93, 192114 (2008)

    Article  ADS  Google Scholar 

  35. C.H. Lei, Thin Solid Films 515, 1701 (2006)

    Article  ADS  Google Scholar 

  36. Z. Ying, X.Y. Zhou, P. Yun, Z.T. Song, S.L. Feng, H.L.W. Chan, Y. Wang, Integr. Ferroelectr. 86, 103 (2006)

    Article  Google Scholar 

  37. I. Kawayama, K. Kotani, M. Tonouchi, Thin Solid Films 464–465, 160 (2004)

    Article  Google Scholar 

  38. G. Li, J. Ohta, K. Okamoto, A. Kobayashi, H. Fujioka, Jpn. J. Appl. Phys. 45, L457 (2006)

    Article  ADS  Google Scholar 

  39. G. Li, J. Ohta, A. Kobayashi, H. Fujioka, Appl. Phys. Lett. 89, 182104 (2006)

    Article  ADS  Google Scholar 

  40. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, in: II–V Nitrides Symposium (1997), p. 1135

  41. D.H. Reitze, E. Haton, R. Ramesh, S. Etemad, D.E. Leaird, T. Sands, Z. Karim, A.R. Tanguay Jr., Appl. Phys. Lett. 63, 596 (1993)

    Article  ADS  Google Scholar 

  42. M. Tsukada, H. Yamawaki, M. Kondo, J.S. Cross, K. Kurihara, J. Electroceram. 13, 29 (2004)

    Article  Google Scholar 

  43. S.H. Ling, Y.S. Tang, W.S. Au, H.K. Wong, Appl. Phys. Lett. 62, 1757 (1993)

    Article  ADS  Google Scholar 

  44. S. Matsubara, N. Shohata, M. Mikami, Jpn. J. Appl. Phys. 24 (3), 10 (1985)

    Google Scholar 

  45. S.L. Swartz, T.R. Shrout, W.A. Schulze, L.E. Cross, J. Am. Ceram. Soc. 67, 311 (1984)

    Article  Google Scholar 

  46. Y. Shao, R.A. Hughes, A. Dabkowski, J. Britten, W.H. Gong, J.S. Preston, G.A. Botton, J. Cryst. Growth 311, 2753 (2009)

    Article  ADS  Google Scholar 

  47. A.V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, M. Zahn, Proc. IEEE 92, 808 (2004)

    Article  Google Scholar 

  48. S.S. Gevorgian, T. Martisson, P.L.J. Linnér, E.L. Kollberg, IEEE Trans. Microwave Theory Tech. 44, 896 (1996)

    Article  Google Scholar 

  49. G.W. Farnell, I.A. Cermak, P. Sylvester, S.K. Wong, IEEE Trans. Sonics Ultrason. 17, 188 (1970)

    Google Scholar 

  50. T. Harigai, D. Tanaka, H. Kakemoto, S. Wada, T. Tsurumi, J. Appl. Phys. 94, 7923 (2003)

    Article  ADS  Google Scholar 

  51. K. Prume, S. Hoffmann, R. Waser, Integr. Ferroelectr. 32, 755 (2001)

    Article  Google Scholar 

  52. K. Wasa, R.T. Ai, A. Unno, T. Matsuda, Y. Ichikawa, T. Matsunaga, in IEEE Ultrasonics Symposium vol. 2 (1999), p. 999

  53. D.G. Schlom, L.-Q. Chen, C.-B. Eom, K.M. Rabe, S.K. Streiffer, J.-M. Triscone, Annu. Rev. Mater. Res. 37, 589 (2007)

    Article  Google Scholar 

  54. K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.-Q. Chen, D.G. Schlom, C.B. Eom, Science 306, 1005 (2004)

    Article  ADS  Google Scholar 

  55. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A. K Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, 051606 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Botton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keogh, D., Chen, Z., Hughes, R.A. et al. (100) MgAl2O4 as a lattice-matched substrate for the epitaxial thin film deposition of the relaxor ferroelectric PMN-PT. Appl. Phys. A 98, 187 (2010). https://doi.org/10.1007/s00339-009-5372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-009-5372-2

PACS

Navigation