Skip to main content
Log in

Exploiting transport of guest metal ions in a host ionic crystal lattice for nanofabrication: Cu nanopatterning with Ag2S

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this letter we demonstrate the possibility of using the solid ionic conductor Ag2S for the fabrication of sub-100 nnm features in a Cu film. We also evaluate the physical properties of the Cu–Ag2S interface through an electroimpedance spectroscopy study. Cu meander lines of 60 nm in width were obtained and the screening length and the surface adatom concentration of Cu on the interface were also evaluated to be 20 nm and 1012/cm2 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Madou, Fundamentals of Microfabrication, 2nd edn. (CRC Press, New York, 2002)

    Google Scholar 

  2. W.S. Ruska, Microelectronic Processing (McGraw-Hill, New York, 1987)

    Google Scholar 

  3. S.Y. Chou, P. Krauss, W. Zhang, L. Guo, L. Zhuang, Nanoimprint lithography. J. Vac. Sci. Technol. B 14(6) (1996)

  4. S.Y. Chou, P. Krauss, W. Zhang, L. Guo, L. Zhuang, Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15(6) (1997)

  5. S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, C.M. Sotomayor Torres, Nanoimprint Lithography: challenges and prospects. Nanotechnology 12, 91–95 (2001)

    Article  ADS  Google Scholar 

  6. A.L. Trimmer, J.L. Hudson, M. Kock, R. Schuster, Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Appl. Phys. Lett. 82(19) (2003)

  7. B. Bhattacharyya, B. Doloi, P.S. Sridhar, Electrochemical micro-machining: new possibilities for micro-manufacturing. J. Mater. Process. Technol. 113(1–3), 301–305 (2001)

    Article  Google Scholar 

  8. M. Hampden-Smith, T.T. Kodas, R.R. Rye, New routes to Cu-patterned teflon substrates. Adv. Mater. 4(7/8) (1992)

  9. R. Gonella, J. Torres, P. Motte, E. van der Vert, J.M. Gilet, Process steps impact on electrical and electromigration performances of dual damascene copper. 2000 IRW final report, IEEE

  10. W. Stainhogl, G. Schindler, G. Steinlesberger, M. Traving, M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 97, 023706 (2005)

    Article  ADS  Google Scholar 

  11. K. Hsu, N. Fang, P.M. Ferreira, Pattern transfer by solid state electrochemical stamping. US patent application # 11/376,908 (2006)

  12. K. Hsu, P. Schultz, N. Fang, P.M. Ferreira, Electrochemical nanoimprinting with solid-state super-ionic stamps. Nano Lett. nl062766o (2006)

  13. P. Schultz, K. Hsu, N. Fang, P. Ferreira, J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. 25(6), 2419–2424 (2007)

    Article  ADS  Google Scholar 

  14. P. Avouris, T. Hertel, R. Martel, Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication. Appl. Phys. Lett. 71, 285 (1997)

    Article  ADS  Google Scholar 

  15. K. Terabe, T. Nakayama, T. Hasegawa, M. Aono, Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring. Appl. Phys. Lett. 80(21) (2002)

  16. K. Terabe, T. Nakayama, T. Hasegawa, M. Aono, Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction. J. Appl. Phys. 91(12) (2002)

  17. F. Prinz, L. Minhwan, R. O’Hayre, M.T. Gur, Electrochemical nanopatterning of Ag on solid-state ionic conductor RbAg4I5 using atomic force microscopy. Appl. Phys. Lett. 85(16) (2004)

  18. M. Rohnke, C. Rosenkrans, J. Janek, The influence of non-equilibrium defects on the anodic dissolution of a metal into a solid electrolyte. Solid State Ionics 177, 447–456 (2006)

    Article  Google Scholar 

  19. R. Kadrgulov, R.A. Jakshibaev, M.A. Khasanov, Phase relation, ionic transport and diffusion in the alloys of Cu2S–Ag2S mixed conductors. Ionics 7, 156–160 (2001)

    Article  Google Scholar 

  20. N. Krestovnikov, Izv. Akad. Nauk SSSR, Neorgan. Mater. 4(7) (1968)

  21. R.D. Armstrong, T. Dickinson, P.M. Willis, The anodic dissolution of silver into silver rubidium iodide. Electroanal. Chem. Interfacial Electrochem. 57, 231–240 (1974)

    Article  Google Scholar 

  22. T.A. Nissila, R. Ferrando, S.C. Ying, Collective and single particle diffusion on surfaces. Adv. Phys. 51(3), 949–1078 (2002)

    Article  ADS  Google Scholar 

  23. H.C. Chang, G. Jaffe, Polarization in electrolytic solutions, part I: theory. J. Chem. Phys. 20(7), 1071–1077 (1952)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keng H. Hsu.

Additional information

This research was supported by NSF through the Center for Chemical-Electrical-Mechanical Manufacturing Systems (Nano-CEMMS) under Grant DMI-0312862. Part of this work was carried out in the Center for Microanalysis of Materials, University of Illinois, which is partially supported by the U.S. Department of Energy under grant DEFG02-91-ER45439.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, K.H., Schultz, P.L., Ferreira, P.M. et al. Exploiting transport of guest metal ions in a host ionic crystal lattice for nanofabrication: Cu nanopatterning with Ag2S. Appl. Phys. A 97, 863–868 (2009). https://doi.org/10.1007/s00339-009-5344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5344-6

PACS

Navigation