Skip to main content
Log in

Formation and photodecomposition of cationic titanium oxide clusters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper we report on the titanium oxide cluster cations Ti x O + y , generated by laser ablation of a titanium target in the region of the nozzle expansion of oxygen. The mass distribution of the clusters produced is recorded with a time-of-flight mass spectrometer. Three different series, namely TiO(TiO2) + n , TiO(TiO2) n O +2 , and (TiO2) + n , appear in the spectra. Two different ablation wavelengths (infrared at 1064 nm and ultraviolet at 308 nm) are used to generate the titanium oxide clusters. At the shorter wavelength the maximum size of the clusters formed decreases.

The interaction of the UV photons with the Ti x O + y clusters is further investigated in a separate two-laser arrangement with an IR laser for ablation and after some mm downstream with an UV system for the cluster beam irradiation. These studies indicate that the intensity of the T x O + y clusters with x≥4, y≥7 is strongly influenced by the absorption of UV photons. This is attributed mainly to dissociation into smaller ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jensen, Rev. Mod. Phys. 71, 1695 (1999)

    Article  ADS  Google Scholar 

  2. K.H. Meiwes-Broer, Metal Clusters at Surfaces (Springer, New York, 2000)

    Google Scholar 

  3. H.-P. Gail, E. Sedlmayr, Faraday Discuss. 109, 303–319 (1998)

    Article  Google Scholar 

  4. K.A. Zemski, D.R. Justes, A.W. Castleman Jr., J. Phys. Chem. B 106, 6136 (2002)

    Article  Google Scholar 

  5. Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J. Photobiol. A: Chem. 106, 51 (1997)

    Article  Google Scholar 

  6. A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33, 269 (2000)

    Article  Google Scholar 

  7. M. Álvaro, E. Carbonell, P. Atienzar, H. García, Chem. Phys. Chem. 7, 1996 (2006)

    Google Scholar 

  8. N. Kumazawa, M. Rafiqul Islam, M. Takeuchi, Photoresponse of a titanium dioxide chemical sensor. J. Electroanal. Chem. 472, 137 (1999)

    Article  Google Scholar 

  9. W. Yu, R.B. Freas, J. Am. Chem. Soc. 112, 7126 (1990)

    Article  Google Scholar 

  10. B.C. Guo, K.P. Kerns, A.W. Castleman Jr., Int. J. Mass Spectrom. Ion Process. 117, 129 (1992)

    Article  Google Scholar 

  11. X.H. Liu, X.G. Zhang, Y. Li, X.Y. Wang, N.Q. Lou, Int. J. Mass Spectrom. 177, L1 (1998)

    Article  Google Scholar 

  12. M. Foltin, G.J. Stueber, E.R. Bernstein, J. Chem. Phys. 111, 9577 (1999)

    Article  ADS  Google Scholar 

  13. X. Matsuda, E.R. Bernstein, J. Phys. Chem A 109, 314 (2005)

    Article  Google Scholar 

  14. Z.-W. Qu, G.-J. Kroes, J. Phys. Chem. B 110, 8998 (2006)

    Article  Google Scholar 

  15. A. Hagfeldt, R. Bergstrom, H.O.G. Siegbahn, S. Lunell, J. Phys. Chem. 97, 12725 (1993)

    Article  Google Scholar 

  16. T. Albaret, F. Finocchi, C. Noguera, J. Chem. Phys. 113, 2238 (2000)

    Article  ADS  Google Scholar 

  17. J. Xiang, X.H. Yan, Y. Xiao, Y.L. Mao, S.H. Wei, Chem. Phys. Lett. 387, 66 (2004)

    Article  ADS  Google Scholar 

  18. Ch. Lüder, E. Georgiou, M. Velegrakis, Int. J. Mass. Spectrom. Ion Proc. 153, 129 (1996)

    Article  Google Scholar 

  19. J. Giapintzakis, A. Sfounis, M. Velegrakis, Int. J. Mass. Spectrom. Ion Proc. 189, 1 (1999)

    Google Scholar 

  20. Ch. Lüder, D. Prekas, M. Velegrakis, Laser Chem. 17, 109 (1997)

    Article  Google Scholar 

  21. D. Prekas, Ch. Lüder, M. Velegrakis, J. Chem. Phys. 108, 4450 (1998)

    Article  ADS  Google Scholar 

  22. M. Velegrakis, in Advances in Metal and Semiconductor Clusters, vol. IX, ed. by M.A. Duncan (JAI Press, London, 2001)

    Google Scholar 

  23. E.R. Fisher, J.L. Elkind, D.E. Clemmer, R. Georgiadis, S.K. Loh, N. Aristov, L.S. Sunderlin, P.B. Armentrout, J. Chem. Phys. 93, 2676 (1990)

    Article  ADS  Google Scholar 

  24. J.E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, 2nd edn. (Harper and Row, New York, 1978)

    Google Scholar 

  25. P.R. Willmott, R. Timm, J.R. Huber, J. Appl. Phys. 82, 2082 (1997)

    Article  ADS  Google Scholar 

  26. L. Torrisi, D. Margarone, A. Borrielli, F. Caridi, Appl. Surf. Sci. 254, 4007 (2008)

    Article  ADS  Google Scholar 

  27. D.R. Miller, in Free Jet Sources in Atomic and Molecular Beam Methods, vol. 1, 9th edn., ed. by G. Scoles (Oxford Univ. Press, London, 1988), p. 14

    Google Scholar 

  28. H. Pauly, Atom, Molecule, and Cluster Beams II (Springer, Berlin, Heidelberg, New York, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michalis Velegrakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velegrakis, M., Sfounis, A. Formation and photodecomposition of cationic titanium oxide clusters. Appl. Phys. A 97, 765–770 (2009). https://doi.org/10.1007/s00339-009-5343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5343-7

PACS

Navigation