Skip to main content
Log in

Atomic and electronic structure of oxygen vacancies and Nb-impurity in SrTiO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present the results of a first-principle full-potential linearized augmented plane wave (FLAPW) method to study the effect of defects on the electronic structure of SrTiO3. In addition, the relaxation of nearest neighbor atoms around those defects were calculated self-consistently. The calculations were performed using the local (spin) density approximations (L(S)DA), for the exchange-correlation potential. SrTiO3 was found to experience an insulator-to-metal transition upon the formation of oxygen vacancies or the substitution of Nb at the Ti site. The formation of oxygen divacancy disclosed additional states below the conduction band edge. The crystalline lattice relaxation showed displacements of atoms in rather large defective region. The magnitudes of atomic movements, however, were not large, normally not exceeding 0.15 Å. Our results were compared to the available experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Peacock, J. Robertson, Appl. Phys. Lett. 83, 5497 (2003)

    Article  ADS  Google Scholar 

  2. C. Zhang, C.L. Wang, J.C. Li, K. Yang, Y.F. Zhang, Q.Z. Wu, Mater. Chem. Phys. 107, 215 (2008)

    Article  Google Scholar 

  3. Y. Rozier, B. Gautier, G. Hyvert, A. Descamps, C. Plossu, C. Dubourdieu, F. Ducroquet, Thin Solid Films 517, 1868 (2009)

    Article  ADS  Google Scholar 

  4. V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, Mater. Sci. Eng. R 63, 81 (2009)

    Article  Google Scholar 

  5. C.D. Pinheiro, E. Longo, E.R. Leite, F.M. Pontes, R. Magnani, J.A. Varela, P.S. Pizanni, T.M. Boschi, F. Lanciotti, Appl. Phys. A 77, 81 (2003)

    Article  ADS  Google Scholar 

  6. N. Shanthi, D.D. Sarma, Phys. Rev. B 57, 2153 (1998)

    Article  ADS  Google Scholar 

  7. N. Bickel, G. Schmidt, K. Heinz, K. Muller, Phys. Rev. Lett. 62, 2009 (1989)

    Article  ADS  Google Scholar 

  8. J. Robertson, K. Xiong, S.J. Clark, Thin Solid Films 496(1), 1 (2006)

    Article  ADS  Google Scholar 

  9. X.G. Guo, X.S. Chen, Y.L. Sun, L.Z. Sun, X.H. Zhou, W. Lu, Phys. Lett. A 317, 501 (2003)

    Article  ADS  Google Scholar 

  10. C. Duque, A. Stashans, Mater. Lett. 57, 3954 (2003)

    Article  Google Scholar 

  11. A. Stashans, F. Vargas, Mater. Lett. 50, 145 (2001)

    Article  Google Scholar 

  12. D. Ricci, G. Bano, G. Pacchioni, Phys. Rev. B 68, 224105 (2003)

    Article  ADS  Google Scholar 

  13. F. Cordero, A. Franco, V.R. Calderone, P. Nanni, V. Buscaglia, Mater. Sci. Eng. A 442, 55 (2006)

    Article  Google Scholar 

  14. M.-Q. Cai, Z. Yin, M.-S. Zhang, Y.-Z. Lee, Chem. Phys. Lett. 401, 405 (2005)

    Article  ADS  Google Scholar 

  15. R.A. Evarestov, S. Piskunov, E.A. Kotomin, G. Borstel, Phys. Rev. B 67, 064101 (2003)

    Article  ADS  Google Scholar 

  16. J. Carrasco, F. Illas, N. Lopez, E.A. Kotomin, Yu.F. Zhukovskii, S. Piskunov, J. Maier, K. Hermansson, Phys. Status Solidi C 2, 153 (2005)

    Article  ADS  Google Scholar 

  17. T. Tanaka, K. Matsunaga, Y. Ikuhara, T. Yamamoto, Phys. Rev. B 68, 205213 (2003)

    Article  ADS  Google Scholar 

  18. J.P. Buban, H. Iddir, S. Ögüt, Phys. Rev. B 69, 180102 (2004)

    Article  ADS  Google Scholar 

  19. P. Blaha, K. Schwarz, J. Luitz, WIEN97 Vienna University of Technology. This is an improved and updated UNIX version of the copyrighted WIEN code, 1997

  20. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  21. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  22. D.M. Ceperly, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  23. D.D. Koelling, B.N. Harmon, J. Phys. C 10, 3107 (1977)

    Article  ADS  Google Scholar 

  24. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 244 (1992)

    Article  Google Scholar 

  25. R. Yu, D. Singh, H. Krakauer, Phys. Rev. B 43, 6411 (1991)

    Article  ADS  Google Scholar 

  26. B. Kohler, S. Wilke, M. Scheffler, R. Kouba, C. Ambrosch-Draxl, Comput. Phys. Commun. 94, 31 (1996)

    Article  ADS  Google Scholar 

  27. K. Schwarz, C. Ambrosch-Draxl, P. Blaha, Phys. Rev. B 42, 2051 (1990)

    Article  ADS  Google Scholar 

  28. C.S. Koonce, M.L. Cohen, J.F. Schooley, W.R. Hosler, E.R. Pfeiffer, Phys. Rev. 163, 380 (1967)

    Article  ADS  Google Scholar 

  29. P. Calvani, M. Capizzi, F. Donato, S. Lupi, P. Maselli, D. Peschiaroli, Phys. Rev. B 47, 8917 (1993)

    Article  ADS  Google Scholar 

  30. E. Kotomin, A. Popov, Nucl. Instrum. Methods, Phys. Res. B 141, 1 (1998)

    Article  ADS  Google Scholar 

  31. T. Tamio, H. Miki, H. Tabata, T. Kawai, S. Kawai, J. Appl. Phys. 76, 5886 (1994)

    Article  ADS  Google Scholar 

  32. C. Lee, J. Destry, J.L. Brebner, Phys. Rev. 11, 2299 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Hamid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamid, A.S. Atomic and electronic structure of oxygen vacancies and Nb-impurity in SrTiO3 . Appl. Phys. A 97, 829–833 (2009). https://doi.org/10.1007/s00339-009-5322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5322-z

PACS

Navigation