Skip to main content
Log in

On the properties and stability of thermally evaporated Ge–As–Se thin films

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin films of Ge–As–Se chalcogenide glasses have been deposited by thermal evaporation from bulk material and submitted to thermal treatments. The linear refractive index and optical band-gap for as-deposited and annealed films have been analyzed as function of the deposition parameters, chemical composition and mean coordination number (MCN). The chemical composition of the films was found to be directly affected by deposition rate, with low rates producing films with elevated Ge and reduced As content, whilst at high rates the Ge content was generally reduced and As levels increased compared with the bulk starting material. As a result films with close to the same stoichiometry as the bulk glass could be obtained by choosing appropriate deposition conditions. As-deposited films with MCN in between 2.44 and 2.55 showed refractive indices and optical band-gaps very close to those of the bulk glass whereas outside this range the film indices were higher and the optical gaps lower than those of the bulk glass. Upon annealing at close to their glass transition temperature, high MCN films evolved such that their indices and band-gaps approached the bulk glass values whereas at low MCN films resulted in no changes to the film properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.B. Seddon, J. Non-Cryst. Solids 184, 44 (1995)

    Article  ADS  Google Scholar 

  2. J.S. Sanghera, I.D. Aggarwal, J. Non-Cryst. Solids 256–257, 6 (1999)

    Article  Google Scholar 

  3. A. Zakery, S.R. Elliott, J. Non-Cryst. Solids 330, 1 (2003)

    Article  ADS  Google Scholar 

  4. M. Pelusi, V. Ta’eed, E. Magi, M. Lamont, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, B. Eggleton, IEEE J. Sel. Top. Quantum Electron. 14, 529 (2008)

    Article  Google Scholar 

  5. M. Galili, J. Xu, H.C. Mulvad, L.K. Oxenløwe, A.T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.Y. Choi, M. Pelusi, F. Luan, B.J. Eggleton, Opt. Express 17, 2182 (2009)

    Article  ADS  Google Scholar 

  6. K. Tanaka, A. Saitoh, N. Terakado, J. Matter Sci., Matter Electron. 20, 38 (2009)

    Article  Google Scholar 

  7. K. Petkov, P.J.S. Ewen, J. Non-Cryst. Solids 249, 150 (1999)

    Article  ADS  Google Scholar 

  8. J.M. Harbold, F.O. Ilday, F.W. Wise, B.G. Aitken, IEEE Photonics Technol. Lett. 14, 822 (2002)

    Article  ADS  Google Scholar 

  9. J.T. Gopinath, M. Soljacic, E.P. Ippen, V.N. Fuflyigin, W.A. King, M. Shurgalin, J. Appl. Phys. 96, 6931 (2004)

    Article  ADS  Google Scholar 

  10. J.C. Phillips, J. Non-Cryst. Solids 34, 153 (1979)

    Article  ADS  Google Scholar 

  11. H. He, M.F. Thorpe, Phys. Rev. Lett. 54, 2107 (1985)

    Article  ADS  Google Scholar 

  12. M.F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983)

    Article  ADS  Google Scholar 

  13. K. Tanaka, Phys. Rev. B 39, 1270 (1989)

    Article  ADS  Google Scholar 

  14. G. Saffarini, Appl. Phys. A 59, 385 (1994)

    Article  ADS  Google Scholar 

  15. G. Saffarini, J.M. Saiter, Chalc. Lett. 3, 49 (2006)

    Google Scholar 

  16. R. Rajesh, J. Philip, J. Matter Sci. 38, 1513 (2003)

    Article  Google Scholar 

  17. R.P. Wang, C.J. Zha, A.V. Rode, S.J. Madden, B. Luther-Davies, J. Mater. Sci., Mater. Electron. 18, S419 (2007)

    Article  Google Scholar 

  18. R.P. Wang, A. Smith, B. Luther-Davies, J. Appl. Phys. 105, 056109 (2009)

    Article  ADS  Google Scholar 

  19. M.F. Thorpe, D.J. Jacobs, M.V. Chubynsky, J.C. Phillips, J. Non-Cryst. Solids 266–269, 859 (2000)

    Article  Google Scholar 

  20. P. Boolchand, D.G. Georgiev, B. Goodman, J. Optoelectron. Adv. Matter 3, 703 (2001)

    Google Scholar 

  21. Y. Wang, P. Boolchand, M. Micoulaut, Europhys. Lett. 52, 633 (2000)

    Article  ADS  Google Scholar 

  22. T. Qu, P. Boolchand, Philos. Mag. 85, 875 (2005)

    Article  ADS  Google Scholar 

  23. F. Wang, S. Mamedov, P. Boolchand, B. Goodman, M. Chandrasekhar, Phys. Rev. B 71, 174201 (2005)

    Article  ADS  Google Scholar 

  24. M.V. Chubynsky, M.F. Thorpe, Curr. Opin. Solid State Matter Sci. 5, 525 (2001)

    Article  Google Scholar 

  25. D. Selvanthan, W.J. Bresser, P. Boolchand, Phys. Rev. B 61, 15061 (2000)

    Article  ADS  Google Scholar 

  26. M. Micoulaut, J.C. Phillips, J. Non-Cryst. Solids 353, 1732 (2007)

    Article  ADS  Google Scholar 

  27. E.R. Skordeva, D.D. Arsova, J. Non-Cryst. Solids 192–193, 665 (1995)

    Article  Google Scholar 

  28. S.R. Elliott, Nature 354, 445 (1991)

    Article  ADS  Google Scholar 

  29. S. Sen, B.G. Aitken, Phys. Rev. B 66, 134204 (2002)

    Article  ADS  Google Scholar 

  30. P. Boolchand, G. Lucovsky, J.C. Phillips, M.F. Thorpe, Philos. Mag. 75, 3823 (2005)

    Article  ADS  Google Scholar 

  31. C. Zha, R.P. Wang, A. Smith, A. Prasad, R.A. Jarvis, B. Luther-Davies, J. Mater. Sci., Mater. Electron. 18, S389 (2007)

    Article  Google Scholar 

  32. R.P. Wang, D.Y. Choi, A.V. Rode, S.J. Madden, B. Luther-Davies, J. Appl. Phys. 101, 113517 (2007)

    Article  ADS  Google Scholar 

  33. A. Prasad, C. Zha, R.P. Wang, A. Smith, S. Madden, B. Luther-Davies, Opt. Express 16, 2804 (2008)

    Article  ADS  Google Scholar 

  34. D.A. Turnbull, J.S. Sanghera, V.Q. Nguyen, I.D. Aggarwal, Mater. Lett. 58, 51 (2003)

    Article  Google Scholar 

  35. J.M. Laniel, J.M. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, K.A. Richardson, J. Non-Cryst. Solids 328, 183 (2003)

    Article  ADS  Google Scholar 

  36. M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, M. Hrdlicka, J. Non-Cryst. Solids 351, 544 (2006)

    Article  ADS  Google Scholar 

  37. R.A. Jarvis, R.P. Wang, A.V. Rode, C. Zha, B. Luther-Davies, J. Non-Cryst. Solids 353, 947 (2007)

    Article  ADS  Google Scholar 

  38. F.E. Jenner, P. Holden, J.A. Mavrogenes, H.S.C. O’Neill, C. Allen, Geostand. Geoanal. Res. (2009, in press)

  39. R.J. Nemanich, G.A.N. Connell, T.M. Hayes, R.A. Street, Phys. Rev. B 18, 6900 (1978)

    Article  ADS  Google Scholar 

  40. L. Tichy, H. Ticha, P. Nagels, E. Sleeckx, Opt. Mater. 4, 771 (1995)

    Article  Google Scholar 

  41. R.P. Wang, A.V. Rode, S.J. Madden, C.J. Zha, R.A. Jarvis, B. Luther-Davies, J. Non-Cryst. Solids 353, 950 (2007)

    Article  ADS  Google Scholar 

  42. R.P. Wang, A. Rode, D.Y. Choi, B. Luther-Davies, J. Am. Ceram. Soc. 91, 2371 (2008)

    Article  Google Scholar 

  43. S.J. Madden, D.Y. Choi, D.A. Bulla, A.V. Rode, B. Luther-Davies, V.G. Ta’eed, M.D. Pelusi, B.J. Eggleton, Opt. Express 15, 14421 (2007)

    Article  ADS  Google Scholar 

  44. V.G. Ta’eed, M.D. Pelusi, B.J. Eggleton, D.Y. Choi, S. Madden, D. Bulla, B. Luther-Davies, Opt. Express 15, 15047 (2007)

    Article  ADS  Google Scholar 

  45. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B.J. Eggleton, N. Stoltz, P. Petroff, J. Vuckovic, Appl. Phys. Lett. 92, 043123 (2008)

    Article  ADS  Google Scholar 

  46. A. Zakery, S.R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications. Springer Series in Optical Sciences, vol. 135 (Springer, Berlin, 2007)

    Google Scholar 

  47. W.A. Kamitakahara, R.L. Cappelletti, P. Boolchand, B. Halfpap, F. Gompf, D.A. Neumann, H. Mutka, Phys. Rev. B 44, 94 (1991)

    Article  ADS  Google Scholar 

  48. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  49. P. Lucas, J. Phys., Condens. Matter 18, 5629 (2006)

    Article  ADS  Google Scholar 

  50. P. Herve, K.L. Vandamme, Infrared Phys. Technol. 35, 609 (1994)

    Article  ADS  Google Scholar 

  51. N.M. Ravindra, P. Ganapathy, J. Choi, Infrared Phys. Technol. 50, 21 (2007)

    Article  ADS  Google Scholar 

  52. N.F. Mott, E.A. Davies, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979)

    Google Scholar 

  53. W. Li, S. Seal, J. Appl. Phys. 98, 053503 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. P. Bulla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulla, D.A.P., Wang, R.P., Prasad, A. et al. On the properties and stability of thermally evaporated Ge–As–Se thin films. Appl. Phys. A 96, 615–625 (2009). https://doi.org/10.1007/s00339-009-5293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5293-0

PACS

Navigation