Skip to main content

O2 photodesorption from AuO 2 and Au2O 2

Abstract

Using time-resolved photoelectron spectroscopy, the decay channels of AuO 2 and Au2O 2 following photoexcitation with 3.1-eV photons have been studied. For AuO 2 , a state with a rather long lifetime of 30 ps has been identified. Its decay path could not be determined but photodesorption can be excluded. For Au2O 2 , the spectra indicate O2 desorption after 3.1-eV photoexcitation on a time scale of 1 ps. While comparing these results on Au n O 2 with analogous data on Ag n O 2 clusters, a discernible pattern emerges: for dissociatively bound O2(AuO 2 , Ag3O 2 ), there are long-living excited states which do not decay by oxygen desorption, while for molecular chemisorption (Au2O 2 , Ag2O 2 , Ag4O 2 , Ag8O 2 ), the 3.1-eV photoexcitation triggers fast O2 desorption with a high quantum yield.

This is a preview of subscription content, access via your institution.

References

  1. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  2. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  3. C. Frischkorn, M. Wolf, Chem. Rev. 106, 4207 (2006)

    Article  Google Scholar 

  4. M. Aeschlimann, M. Bauer, S. Pawlik, Chem. Phys. 205, 127 (1996)

    Article  Google Scholar 

  5. N. Pontius, M. Neeb, W. Eberhardt, G. Lüttgens, P.S. Bechthold, Phys. Rev. B 67, 035425 (2003)

    Article  ADS  Google Scholar 

  6. N. Pontius, P.S. Bechthold, M. Neeb, W. Eberhardt, Phys. Rev. Lett. 84, 1132 (2000)

    Article  ADS  Google Scholar 

  7. V.V. Kresin, Y.N. Ovchinnikov, Phys. Rev. B 73, 115412 (2006)

    Article  ADS  Google Scholar 

  8. M. Niemietz, M. Engelke, Y.D. Kim, G. Ganteför, Phys. Rev. B 75, 085438 (2007)

    Article  ADS  Google Scholar 

  9. M. Niemietz, M. Engelke, Y.D. Kim, G. Ganteför, Appl. Phys. A 87, 615 (2007)

    Article  ADS  Google Scholar 

  10. M. Niemietz, K. Koyasu, G. Ganteför, Y.D. Kim, Chem. Phys. Lett. 438, 263 (2007)

    Article  ADS  Google Scholar 

  11. J. Li, X. Li, H.-J. Zhai, L.-S. Wang, Science 299, 864 (2003)

    Article  ADS  Google Scholar 

  12. B. Yoon, H. Häkkinen, U. Landman, A.S. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307, 403 (2005)

    Article  ADS  Google Scholar 

  13. Y.D. Kim, G. Ganteför, Q. Sun, P. Jena, Chem. Phys. Lett. 396, 69 (2004)

    Article  ADS  Google Scholar 

  14. D. Stolcic, M. Fischer, G. Ganteför, Y.D. Kim, J. Am. Chem. Soc. 125, 2848 (2003)

    Article  Google Scholar 

  15. M. Niemietz, P. Gerhardt, G. Ganteför, Y.D. Kim, Chem. Phys. Lett. 380, 99 (2003)

    Article  ADS  Google Scholar 

  16. G. Ganteför, D.M. Cox, A. Kaldor, J. Chem. Phys. 94, 854 (1991)

    Article  ADS  Google Scholar 

  17. D. Menzel, R. Gomer, J. Chem. Phys. 41, 3311 (1964)

    Article  ADS  Google Scholar 

  18. P.A. Redhead, Can. J. Phys. 42, 886 (1964)

    Google Scholar 

  19. Y.D. Kim, G. Ganteför, Chem. Phys. Lett. 383, 80 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Ganteför.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koyasu, K., Westhäuser, W., Niemietz, M. et al. O2 photodesorption from AuO 2 and Au2O 2 . Appl. Phys. A 96, 679–684 (2009). https://doi.org/10.1007/s00339-009-5264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5264-5

PACS

  • 68.43.Tj
  • 78.47.+p
  • 33.80.Eh
  • 36.40.-c