Skip to main content
Log in

Critical evolution of the local order parameters related to the nanopolar domains in Pb(Mg1/3Nb2/3)O3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present paper, Pb(Mg1/3Nb2/3)O3 (PMN) ceramics prepared by the columbite method were investigated. The dielectric study indicates typical relaxor properties, with a frequency dispersion in the range of 200–350 K. The relaxor-to-paraelectric phase transition was evidenced by the continuous decrease of the local order parameter derived from the permittivity-temperature data. As a result of the critical behavior, the main Raman modes show anomalies at: (i) ∼150 K; (ii) ∼220 K (i.e. close to the critical temperature reported for the field-induced ferroelectric state in PMN single crystal); (iii) ∼260 K (i.e. the temperature of the permittivity maximum); (iv) ∼350 K (the temperature for initiation of the cluster freezing process T *); (v) ∼620 K (Burns temperature). The frequency split of the doublet at ∼605 and ∼500 cm−1 presents a critical behavior related to the local symmetry lowering and to the structure ordering due to a phase transformation which takes place below T *. The tunability in the paraelectric state was interpreted in terms of reorientation of the non-interacting nanopolar clusters in a double-well potential. The temperature dependence of the nanopolar domain size also shows anomalies in the range of T *. The size and dynamics of the polar nanodomains is essential in determining the functional properties of the Pb(Mg1/3Nb2/3)O3 relaxor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Smolensky, A.I. Agronovskaya, Zh. Tekh. Fiz. 28, 1491 (1958) [Sov. Phys. Tech. Phys. 3, 1380 (1958)]

    Google Scholar 

  2. G.A. Samara, J. Phys., Condens. Matter 15, R367 (2003) and refs. therein

    Article  ADS  Google Scholar 

  3. A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006) and refs. therein

    Article  ADS  Google Scholar 

  4. A. Ianculescu, A. Braileanu, I. Pasuk, C. Popescu, J. Therm. Anal. Calorim. 80, 663 (2005)

    Article  Google Scholar 

  5. Y. Yan, S.J. Pennycook, Z. Xu, D. Viehland, Appl. Phys. Lett. 72, 3145 (1998)

    Article  ADS  Google Scholar 

  6. P.K. Davies, M.A. Akbas, J. Phys. Chem. Solids 61, 159 (2000)

    Article  ADS  Google Scholar 

  7. P. Bonneau, P. Garnier, G. Calvarin, E. Husson, J.R. Gavarri, A.W. Hewat, A. Morell, J. Solid State Chem. 91, 350 (1991)

    Article  ADS  Google Scholar 

  8. C. Boulesteix, F. Varnier, A. Llebaria, E. Husson, J. Solid State Chem. 108, 141 (1994)

    Article  ADS  Google Scholar 

  9. E. Husson, L. Abello, A. Morell, Mater. Res. Bull. 25, 539 (1990)

    Article  Google Scholar 

  10. H. Idink, W. White, J. Appl. Phys. 76, 1789 (1994)

    Article  ADS  Google Scholar 

  11. M.E. Marsi, R. Farhi, Y. Yuzyuk, J. Phys., Condens. Matter 10, 9161 (1998)

    Article  ADS  Google Scholar 

  12. A. Slodczyk, A. Kania, P. Daniel, A. Ratuszna, J. Phys. D, Appl. Phys. 38, 2910 (2005)

    Article  ADS  Google Scholar 

  13. O. Svitelskiy, J. Toulouse, G. Yong, Z.G. Ye, Phys. Rev. B 68, 104107 (2003) and refs. therein

    Article  ADS  Google Scholar 

  14. A. Ianculescu, A. Braileanu, M. Viviani, L. Mitoseriu, J. Eur. Ceram. Soc. 27, 4375 (2007)

    Article  Google Scholar 

  15. F.M. Tufescu, L. Curecheriu, A. Ianculescu, C.E. Ciomaga, L. Mitoseriu, J. Optoelectron. Adv. Mater. 10, 1894 (2008)

    Google Scholar 

  16. Z.Y. Cheng, R.S. Katiyar, X. Yao, A. Guo, Phys. Rev. B 55, 8165 (1997)

    Article  ADS  Google Scholar 

  17. W. Kleemann, J. Mater. Sci. 41, 129 (2006)

    Article  ADS  Google Scholar 

  18. Z.R. Liu, Y. Zhang, B.L. Gu, X.W. Zhang, J. Phys., Condens. Matter 13, 1133 (2001)

    Article  ADS  Google Scholar 

  19. L. Mitoseriu, A. Stancu, C. Fedor, P.M. Vilarinho, J. Appl. Phys. 94, 1918 (2003)

    Article  ADS  Google Scholar 

  20. G.A. Samara, in Solid State Physics, vol. 56 ed. by H. Ehrenreich, F. Spaepen. (Academic Press, New York, 2001), p. 240; and refs. therein

    Google Scholar 

  21. G.A. Samara, J. Phys., Condens. Matter 15, R367 (2003)

    Article  ADS  Google Scholar 

  22. D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35, 1972 (1975)

    Article  Google Scholar 

  23. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8003 (1992)

    Article  ADS  Google Scholar 

  24. J. Kreisel, B. Dkhil, P. Bouvier, J.M. Kiat, Phys. Rev. B. 65, 172101 (2002)

    Article  ADS  Google Scholar 

  25. S.M. Gupta, A.R. Kulkarni, Mater. Chem. Phys. 39, 98 (1994)

    Article  Google Scholar 

  26. J. Carreaud, P. Gemeiner, J.M. Kiat, B. Dkhil, C. Bogicevic, T. Rojac, B. Malic, Phys. Rev. B 72, 174115 (2005)

    Article  ADS  Google Scholar 

  27. A.K. Tagantsev, J.W. Lu, S. Stemmer, Appl. Phys. Lett. 86, 03290 (2005)

    Article  Google Scholar 

  28. U. Bianchi, J. Dec, W. Kleemann, J.G. Bednorz, Phys. Rev. B 51, 8737 (1995)

    Article  ADS  Google Scholar 

  29. X. Wei, X. Yao, J. Appl. Phys. 100, 064319 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavinia P. Curecheriu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curecheriu, L.P., Mitoseriu, L., Ianculescu, A. et al. Critical evolution of the local order parameters related to the nanopolar domains in Pb(Mg1/3Nb2/3)O3 ceramics. Appl. Phys. A 97, 587–594 (2009). https://doi.org/10.1007/s00339-009-5258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5258-3

PACS

Navigation